Gotowa bibliografia na temat „Équations One-Way”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Équations One-Way”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Équations One-Way"

1

GUSTAFSSON, BERTIL. "Analysis and Methods in Fluid Mechanics". International Journal of Modern Physics C 02, nr 01 (marzec 1991): 75–85. http://dx.doi.org/10.1142/s0129183191000093.

Pełny tekst źródła
Streszczenie:
When constructing numerical methods for partial differential equations, it is important to have a thorough understanding of the continuous model and the characteristic properties of its solutions. We shall present methods of analysis for determining well-posedness of hyperbolic and mixed hyperbolic-parabolic équations which are applicable to the time-dependent Euler and Navier-Stokes equations. We shall then discuss difference- and finite volume methods and the construction of grids. The geometry of realistic problems is usually such that it is almost impossible to construct one structured grid. One way to overcome this difficulty is to use overlapping grids, where each domain has a structured grid. We discuss stability and accuracy of difference methods applied on such grids. Many problems in physics and engineering are defined in boundary domains, and artificial boundaries are introduced for computational reasons. In some cases one can construct accurate boundary conditions at these open boundaries. We shall indicate how this can be achieved, but we will also point out certain cases where accurate solutions are impossible to be obtained on limited domains. Finally some comments will be given on the difficulties arising when almost incompressible flow is computed. This corresponds to small Mach-numbers, and extra care must be taken when designing numerical methods. The theory will be complemented by numerical experiments for various flow problems in two space dimensions.
Style APA, Harvard, Vancouver, ISO itp.
2

Carrell, Sean, i Guillaume Chapuy. "A simple recurrence formula for the number of rooted maps on surfaces by edges and genus". Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AT,..., Proceedings (1.01.2014). http://dx.doi.org/10.46298/dmtcs.2424.

Pełny tekst źródła
Streszczenie:
International audience We establish a simple recurrence formula for the number $Q_g^n$ of rooted orientable maps counted by edges and genus. The formula is a consequence of the KP equation for the generating function of bipartite maps, coupled with a Tutte equation, and it was apparently unnoticed before. It gives by far the fastest known way of computing these numbers, or the fixed-genus generating functions, especially for large $g$. The formula is similar in look to the one discovered by Goulden and Jackson for triangulations (although the latter does not rely on an additional Tutte equation). Both of them have a very combinatorial flavour, but finding a bijective interpretation is currently unsolved - should such an interpretation exist, the history of bijective methods for maps would tend to show that the case treated here is easier to start with than the one of triangulations. Nous établissons une formule de récurrence simple pour le nombre $Q_g^n$ de cartes enracinées de genre $g$ à $n$ arêtes. Cette formule est une conséquence relativement simple du fait que la série génératrice des cartes biparties est une solution de l’équation KP et d’une équation de Tutte, et elle était apparemment passée inaperçue jusque là. Elle donne de loin le moyen le plus rapide pour calculer ces nombres, en particulier quand $g$est grand. La formule est d’apparence similaire à celle découverte par Goulden et Jackson pour les triangulations (quoique cette dernière ne repose pas sur une équation de Tutte additionnelle). Les deux formules ont une saveur très combinatoire, mais trouver une interprétation bijective reste un problème ouvert – mais si une telle interprétation existe, l’histoire des méthodes bijectives pour les cartes tendrait à montrer que le cas traité ici est plus facile pour commencer que celui des triangulations.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Équations One-Way"

1

Ruello, Maëlys. "Méthodes de propagation de type One-Way pour les équations de Navier-Stokes : vers le calcul des perturbations optimales". Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0061.

Pełny tekst źródła
Streszczenie:
Les approches One-Way sont des méthodes de simulation numérique des phénomènes de propagation d’ondes dans une direction privilégiée, qui permettent de palier le défaut (suivi d’un seul mode) des méthodes modales tout en garantissant un coût de calcul faible par rapport à une simulation directe. Bien que ces méthodes soient utilisées depuis plus de cinquante ans dans divers domaines comme l’électromagnétisme et la géophysique, leur application en mécanique des fluides est plus récente avec les travaux pionniers de T. Colonius et A. Towne en 2015.Cette thèse possédait un double objectif. Dans un premier temps, il s’agissait de développer des méthodes de simulation de type One-Way dans le cadre des équations de Navier-Stokes en réalisant une extension de la méthodologie proposée dans les travaux de thèse de C. Rudel pour les équations d'Euler. Dans un second temps, elles ont été exploitées pour concevoir un outil numérique dans le but de calculer la perturbation optimale d’un écoulement. L’ensemble de ces développements a été éprouvé sur différentes problématiques représentatives et en considérant des situations de complexité croissante. En particulier, le cas d’un conduit partiellement revêtu d’un liner acoustique en présence d’une instabilité de surface a été traité à l’aide d’une approche de type méthode de décomposition de domaine basée sur les solveurs One-Way et comparé à la fois à des données expérimentales et des résultats issus d’autres solveurs numériques. De plus, la capacité des approches One-Way à propager des instabilités de couches limites et leur éventuel couplage a été observée. Enfin, un algorithme de calcul de perturbations optimales, basé sur une méthode adjointe, a été utilisé pour déterminer entre autres le forçage optimal et la réponse associée d'un écoulement de couche limite bidimensionnelle à Mach 4.5
One-Way approaches are numerical simulation methods for wave propagation phenomena in a preferred direction, which overcome the limitation (single-mode tracking) of modal methods while ensuring a low computational cost compared to a direct simulation. Although these methods have been used for over fifty years in various fields such as electromagnetism and geophysics, their application in fluid mechanics is more recent, with pioneering work by T. Colonius and A. Towne in 2015.This thesis had a dual objective. Firstly, it aimed to develop One-Way type simulation methods for the Navier-Stokes equations, by extending the methodology proposed in C. Rudel's thesis work for the Euler equations. Subsequently, these methods were used to develop a numerical tool for calculating optimal flow disturbance. All these developments have been tested on a number of representative problems, considering situations of increasing complexity. In particular, the case of a partially lined duct, in the presence of a surface instability, was treated using a domain decomposition method based on One-Way solvers, and compared with both experimental data and results from other numerical solvers. Additionally, the ability of One-Way approaches to propagate boundary layer instabilities and their possible coupling was observed. Finally, an algorithm for computing optimal perturbations, based on an adjoint method, was used to determine, among other things, the optimal forcing and associated response of a two-dimensional boundary layer flow at Mach 4.5
Style APA, Harvard, Vancouver, ISO itp.
2

Altaie, Huda. "Nouvelle technique de grilles imbriquées pour les équations de Saint-Venant 2D". Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4220/document.

Pełny tekst źródła
Streszczenie:
Les écoulements en eau peu profonde se rencontrent dans de nombreuses situations d’intérêts : écoulements de rivières et dans les lacs, mais aussi dans les mers et océans (courants de marée, tsunami, etc.). Ils sont modélisés par un système d’équations aux dérivées partielles, où les inconnues sont la vitesse de l’écoulement et la hauteur d’eau. On peut supposer que la composante verticale de la vitesse est petite devant les composantes horizontales et que ces dernières sont indépendantes de la profondeur. Le modèle est alors donné par les équations de shallow water (SWEs). Cette thèse se concentre sur la conception d’une nouvelle technique d’interaction de plusieurs grilles imbriquées pour modèle en eau peu profonde en utilisant des méthodes numériques. La première partie de cette thèse comprend, La dérivation complète de ces équations à partir des équations de Navier- Stokes est expliquée. Etudier le développement et l’évaluation des méthodes numériques en utilisant des méthodes de différences finies et plusieurs exemples numériques sont appliqués utilisant la condition initiale du niveau gaussien pour 2DSWEs. Dans la deuxième partie de la thèse, nous sommes intéressés à proposer une nouvelle technique d’interaction de plusieurs grilles imbriquées pour résoudre les modèles océaniques en utilisant quatre choix des opérateurs de restriction avec des résultats de haute précision. Notre travail s’est concentré sur la résolution numérique de SWE par grilles imbriquées. A chaque niveau de résolution, nous avons utilisé une méthode classique de différences finies sur une grille C d’Arakawa, avec un schéma de leapfrog complété par un filtre d’Asselin. Afin de pouvoir affiner les calculs dans les régions perturbées et de les alléger dans les zones calmes, nous avons considéré plusieurs niveaux de résolution en utilisant des grilles imbriquées. Ceci permet d’augmenter considérablement le rapport performance de la méthode, à condition de régler efficacement les interactions (spatiales et temporelles) entre les grilles. Dans la troisième partie de cette thèse, plusieurs exemples numéériques sont testés pour 2DSWE avec imbriqués 3:1 et 5:1. Finalement, la quatrième partie de ce travail, certaines applications de grilles imbriquées pour le modèle tsunami sont présentées
Most flows in the rivers, seas, and ocean are shallow water flow in which the horizontal length andvelocity scales are much larger than the vertical ones. The mathematical formulation of these flows, so called shallow water equations (SWEs). These equations are a system of hyperbolic partial differentialequations and they are effective for many physical phenomena in the oceans, coastal regions, riversand canals. This thesis focuses on the design of a new two-way interaction technique for multiple nested grids 2DSWEs using the numerical methods. The first part of this thesis includes, proposing several ways to develop the derivation of shallow water model. The complete derivation of this system from Navier-Stokes equations is explained. Studying the development and evaluation of numerical methods by suggesting new spatial and temporal discretization techniques in a standard C-grid using an explicit finite difference method in space and leapfrog with Robert-Asselin filter in time which are effective for modeling in oceanic and atmospheric flows. Several numerical examples for this model using Gaussian level initial condition are implemented in order to validate the efficiency of the proposed method. In the second part of our work, we are interested to propose a new two-way interaction technique for multiple nested grids to solve ocean models using four choices of higher restriction operators (update schemes) for the free surface elevation and velocities with high accuracy results. Our work focused on the numerical resolution of SWEs by nested grids. At each level of resolution, we used explicit finite differences methods on Arakawa C-grid. In order to be able to refine the calculations in troubled regions and move them into quiet areas, we have considered several levels of resolution using nested grids. This makes it possible to considerably increase the performance ratio of the method, provided that the interactions (spatial and temporal) between the grids are effectively controlled. In the third part of this thesis, several numerical examples are tested to show and verify twoway interaction technique for multiple nested grids of shallow water models can works efficiently over different periods of time with nesting 3:1 and 5:1 at multiple levels. Some examples for multiple nested grids of the tsunami model with nesting 5:1 using moving boundary conditions are tested in the fourth part of this work
Style APA, Harvard, Vancouver, ISO itp.
3

Doc, Jean-Baptiste. "Approximations unidirectionnelles de la propagation acoustique en guide d'ondes irrégulier : application à l'acoustique urbaine". Thesis, Le Mans, 2012. http://www.theses.fr/2012LEMA1032/document.

Pełny tekst źródła
Streszczenie:
L'environnement urbain est le siège de fortes nuisances sonores notamment générées par les moyens de transport. Afin de lutter contre ces nuisances, la réglementation européenne impose la réalisation de cartographies de bruit. Dans ce contexte, des travaux fondamentaux sont menés autour de la propagation d'ondes acoustiques basses fréquences en milieu urbain. Différents travaux de recherche récents portent sur la mise en œuvre de méthodes ondulatoires pour la propagation d'ondes acoustiques dans de tels milieux. Le coût numérique de ces méthodes limite cependant leur utilisation dans un contexte d'ingénierie. L'objectif de ces travaux de thèse porte sur l'approximation unidirectionnelle de la propagation des ondes, appliquée à l'acoustique urbaine. Cette approximation permet d'apporter des simplifications à l'équation d'onde afin de limiter le temps de calcul lors de sa résolution. La particularité de ce travail de thèse réside dans la prise en compte des variations, continues ou discontinues, de la largeur des rues. Deux formalismes sont utilisés : l'équation parabolique et une approche multimodale. L'approche multimodale sert de support à une étude théorique sur les mécanismes de couplages de modes dans des guides d'ondes irréguliers bidimensionnels. Pour cela, le champ de pression est décomposé en fonction du sens de propagation des ondes à la manière d'une série de Bremmer. La contribution particulière de l'approximation unidirectionnelle est étudiée en fonction des paramètres géométriques du guide d'ondes, ce qui permet de mieux cerner les limites de validité de cette approximation. L'utilisation de l'équation parabolique a pour but une application à l'acoustique urbaine. Une transformation de coordonnées est associée à l'équation parabolique grand angle afin de prendre en compte l'effet de la variation de la section du guide d'ondes. Une méthode de résolution est alors spécifiquement développée et permet une évaluation précise du champ de pression. D'autre part, une méthode de résolution de l'équation parabolique grand angle tridimensionnelle est adaptée à la modélisation de la propagation acoustique en milieu urbain. Cette méthode permet de tenir compte des variations brusques ou continues de la largeur de la rue. Une comparaison avec des mesures sur maquette de rue à échelle réduite permet de mettre en avant les possibilités de la méthode
The urban environment is the seat of loud noise generated by means of transportation. To fight against these nuisances, European legislation requires the achievement of noise maps. In this context, fundamental work is carried around the propagation of acoustic low-frequency waves in urban areas. Several recent research focuses on the implementation of wave methods for acoustic wave propagation in such environments. The computational cost of these methods, however, limits their use in the context of engineering. The objective of this thesis focuses on the one-way approximation of wave propagation, applied to urban acoustics. This approximation allows to make simplifications on the wave equation in order to limit the computation time. The particularity of this thesis lies in the consideration of variations, continuous or discontinuous, of the width of streets. Two formalisms are used: parabolic equation and a multimodal approach. The multimodal approach provides support for a theoretical study on the mode-coupling mechanisms in two-dimensional irregular waveguides. For this, the pressure field is decomposed according to the direction of wave propagation in the manner of a Bremmer series. The specific contribution of the one-way approximation is studied as a function of the geometric parameters of the waveguide, which helps identify the limits of validity of this approximation. Use of the parabolic equation is intended for application to urban acoustic. A coordinate transformation is associated with the wide-angle parabolic-equation in order to take into account the variation effect of the waveguide section. A resolution method is developed specifically and allows an accurate assessment of the pressure field. On the other hand, a solving method of the three-dimensional parabolic-equation is suitable for the modeling of acoustic propagation in urban areas. This method takes into account sudden or continuous variations of the street width. A comparison with measurements on scaled model of street allows to highlight the possibilities of the method
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii