Gotowa bibliografia na temat „Epitaxie van der Waals”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Epitaxie van der Waals”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Epitaxie van der Waals"
Mulder, Liesbeth, Daan H. Wielens, Yorick A. Birkhölzer, Alexander Brinkman i Omar Concepción. "Revisiting the van der Waals Epitaxy in the Case of (Bi0.4Sb0.6)2Te3 Thin Films on Dissimilar Substrates". Nanomaterials 12, nr 11 (24.05.2022): 1790. http://dx.doi.org/10.3390/nano12111790.
Pełny tekst źródłaYe, Lianxu, Di Zhang, Juanjuan Lu, Sicheng Xu, Ruixing Xu, Jiyu Fan, Rujun Tang i in. "Epitaxial (110)-oriented La0.7Sr0.3MnO3 film directly on flexible mica substrate". Journal of Physics D: Applied Physics 55, nr 22 (4.03.2022): 224002. http://dx.doi.org/10.1088/1361-6463/ac570d.
Pełny tekst źródłaChen, Hou-Guang, Yung-Hui Shih, Huei-Sen Wang, Sheng-Rui Jian, Tzu-Yi Yang i Shu-Chien Chuang. "Van der Waals Epitaxial Growth of ZnO Films on Mica Substrates in Low-Temperature Aqueous Solution". Coatings 12, nr 5 (20.05.2022): 706. http://dx.doi.org/10.3390/coatings12050706.
Pełny tekst źródłaRen, Fang, Bingyao Liu, Zhaolong Chen, Yue Yin, Jingyu Sun, Shuo Zhang, Bei Jiang i in. "Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer". Science Advances 7, nr 31 (lipiec 2021): eabf5011. http://dx.doi.org/10.1126/sciadv.abf5011.
Pełny tekst źródłaWang, S. F., W. K. Fong, W. Wang, K. K. Leung i C. Surya. "Growth of SnS van der Waals Epitaxies on Layered Substrates". MRS Proceedings 1493 (2013): 213–17. http://dx.doi.org/10.1557/opl.2013.234.
Pełny tekst źródłaRyu, Huije, Hyunik Park, Joung-Hun Kim, Fan Ren, Jihyun Kim, Gwan-Hyoung Lee i Stephen J. Pearton. "Two-dimensional material templates for van der Waals epitaxy, remote epitaxy, and intercalation growth". Applied Physics Reviews 9, nr 3 (wrzesień 2022): 031305. http://dx.doi.org/10.1063/5.0090373.
Pełny tekst źródłaUeno, Tetsuji, Hideki Yamamoto, Koichiro Saiki i Atsushi Koma. "Van der Waals epitaxy of metal dihalide". Applied Surface Science 113-114 (kwiecień 1997): 33–37. http://dx.doi.org/10.1016/s0169-4332(96)00770-2.
Pełny tekst źródłaLang, O., A. Klein, R. Schlaf, T. Löher, C. Pettenkofer, W. Jaegermann i A. Chevy. "heterointerfaces prepared by Van der Waals epitaxy". Journal of Crystal Growth 146, nr 1-4 (styczeń 1995): 439–43. http://dx.doi.org/10.1016/0022-0248(94)00504-4.
Pełny tekst źródłaChang, Po-Han, Chia-Shuo Li, Fang-Yu Fu, Kuo-You Huang, Ang-Sheng Chou i Chih-I. Wu. "Van Der Waals Epitaxy: Ultrasensitive Photoresponsive Devices Based on Graphene/BiI3 van der Waals Epitaxial Heterostructures (Adv. Funct. Mater. 23/2018)". Advanced Functional Materials 28, nr 23 (czerwiec 2018): 1870160. http://dx.doi.org/10.1002/adfm.201870160.
Pełny tekst źródłaLi, Xufan, Ming-Wei Lin, Junhao Lin, Bing Huang, Alexander A. Puretzky, Cheng Ma, Kai Wang i in. "Two-dimensional GaSe/MoSe2misfit bilayer heterojunctions by van der Waals epitaxy". Science Advances 2, nr 4 (kwiecień 2016): e1501882. http://dx.doi.org/10.1126/sciadv.1501882.
Pełny tekst źródłaRozprawy doktorskie na temat "Epitaxie van der Waals"
Journot, Timotée. "Epitaxie van der Waals de GaN sur graphène pour des applications en photonique". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI078/document.
Pełny tekst źródłaDue to its outstanding physical properties, GaN is a very attractive material to conceive photonic devices. However its synthesis is very complex and remains an obstacle to its use. For now, heteroepitaxy is the most used technique but the lack of crystalline substrates with properties close to those of GaN leads to the growth of highly defective epitaxial thin films. Although GaN based devices are already functional, an increase in the crystalline quality of the material will improve their performances.Van derWaals (VdW) epitaxy is an alternative that differs from classical epitaxy by the nature of the interaction at the interface between the substrate and the deposited material. The former is then no longer governed by strong forces (covalent bonds, ionic bonds, etc) but by weak forces of VdW type. VdW heteroepitaxy, which might allow a compliant growth interface, thus appears as a beneficial alternative to improve the cristalline quality of the epitaxial layers. This thesis proposes to explore in detail the feasability of the VdW epitaxy in the particular case of the growth of GaN on graphene by MOVPE.The use of a new type of surface with a very low surface energy, to support the GaN epitaxy requires the developpement of a new growth strategy. In this work, a three step process was set up for the nucleation of GaN on graphene. The resultant micronic GaN crystals exhibit high crystalline quality, being free of stress and having a unique cristallographic orientation. An epitaxial relationship can thus be implemented through a weak interface that turns out to be compliant. The feasibility of the VdW epitaxy as well as its advantages is demonstrated experimentally. Specifically, we have highlighted the role of the substrate underlying graphene in the epitaxial relationship - in particular its polar character seems required for a remote epitaxial relationship to exist through the graphene.This study allowed to highlight the full potential of the VdW epitaxy of 3D materials on 2D, to identify some limitations and also to demonstrate the possibilities opened by the formation of new 3D / 2D interfaces
Rudolph, Reiner. "Quasi-van der Waals-Epitaxie von GaSe auf Si und GaAs Struktur und elektronische Eigenschaften /". [S.l. : s.n.], 1999. http://www.diss.fu-berlin.de/1999/65/index.html.
Pełny tekst źródłaMarsden, Alexander J. "Van der Waals epitaxy in graphene heterostructures". Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/77193/.
Pełny tekst źródłaWisotzki, Elmar. "Quasi-van-der-Waals-Epitaxie von II-VI-Halbleitern auf Schichtgitterchalkogeniden und GaSe-terminierten Si(111)-Oberflächen". [S.l. : s.n.], 2002. http://elib.tu-darmstadt.de/diss/000330.
Pełny tekst źródłaVergnaud, Céline. "Optimisation de la croissance de MoSe2 - WSe2 par épitaxie de Van der Waals pour la valleytronique". Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY038.
Pełny tekst źródłaThe purpose of this thesis is to optimize growth by molecular beam epitaxy in the van der Waals regime of two-dimensional (2D) semiconductor layers of transition metal diselenides (MoSe2, WSe2) for magneto-optical and electric studies. This optimization involves improving the crystallographic quality of the layers over large areas by adjusting the growth parameters (temperature and flux). In particular, the control of the surface state of the substrate is decisive on the growth mechanisms of these layers. The development of these low-dimensional materials required the use of advanced characterization techniques (Grazing incidence X-ray diffraction, High Resolved Transmission Electronic Microscopy, ect). In this thesis, we focused on two specific substrates : silicon oxide and mica. They both have the particularity of being insulating and inert from an electronic point of view, which is essential to probe the optical and electrical intrinsic properties of 2D layers. Finally, we developed electrical doping (p doping) for microelectronics and magnetic (Mn doping) for valleytronics
Duraz, Jules. "LEDs flexibles exploitant l'épitaxie van der Waals avec les semi-conducteurs nitrures : application aux implants cochléaires optiques". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST101.
Pełny tekst źródłaThe development of optogenetics is opening up a new field of application for semiconductor-based light sources.Gallium nitride-based LEDs, for example, can be used in prototype implants to restore hearing.There are particular constraints for these applications, with specific emission criteria that must be met for radii of curvature of the order of a millimetre.The aim of this thesis is to produce flexible LEDs capable of achieving these bending radii and to characterise the evolution of the properties of the LEDs produced as a function of their bending. The fabrication of flexible LEDs is mainly based on "van der Waals" epitaxy on a sapphire substrate, but LED structures on silicon are also studied. Various manufacturing and transfer techniques are developed.A measurement bench is designed and assembled to characterise the flexible LEDs in order to meet the needs of the application. The electro-optical properties of the LEDs are measured down to a radius of curvature of 3 mm
Sant, Roberto. "Exploration par rayonnement synchrotron X de la croissance et de la structure de dichalcogénures 2D". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY075.
Pełny tekst źródłaTwo-dimensional transition metal dichalcogenides (TMDCs) are promising materials for a variety of applications, especially in optoelectronics. However, the lack of understanding of their epitaxy - i.e. growth mechanism, microscopic structure, nature of the 2D layer-substrate interaction, etc. - is still a crucial issue to address. In this PhD thesis we explored a series of epitaxial growths of monolayer and thin film TMDCs grown by molecular beam epitaxy (MBE) on a variety of substrates. We studied their atomic structures and we attempted the modifications of some of them with various in situ methods. Several systems and processes have been investigated: (i) transition metal ditellurides, ZrTe2 , MoTe2 and TiTe2 on InAs(111) substrate, (ii) the intercalation of alkali metal species between single layer MoS2 and its Au(111) substrate, (iii) the growth and the thermal treatments in H2S atmosphere of monolayer PtSe2 on Pt(111). Our work relies on both phenomenological and quantitative methods based on surface X-ray diffraction, often complemented by parallel analysis performed with other probes, e.g. STM, TEM, XPS, ARPES. Most notably, we found that: (i) a metastable orthorhombic phase and a charge density wave phase can be stabilized at room temperature in MoTe2 and TiTe2 owing to the epitaxial strain in the materials; (ii) the intercalation of Cs atoms under MoS2 induces structural and electronic decoupling of the 2D MoS2 layer from its Au(111) substrate; (iii) the sulfurization of PtSe2 promotes the Se-by-S substitution in one (or both) of its two chalcogen layers, leading either to the full conversion of the selenide into a sulfide or even to an ordered Janus alloy
Wagner, Christian. "Potential Energy Minimization as the Driving Force for Order and Disorder in Organic Layers". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-38242.
Pełny tekst źródłaThema dieser Arbeit ist die strukturelle Charakterisierung von organischen Einfach- und Heterolagen sowie deren theoretische Beschreibung und Modellierung. Es wurden Submonolagen und Monolagen (ML) der polyzyklischen Kohlenwasserstoffe Quaterrylen (QT) und Hexa-peri-hexabenzocoronen (HBC) auf Ag(111) und Au(111) Einkristallen untersucht und ein Übergang von einer ungeordneten, isotropen Phase zu einer geordneten Phase mit steigender Bedeckung beobachtet. Die geordnete Phase wies dabei bedeckungsabhängige Gitterkonstanten auf. Das intermolekulare Potential wurde unter Berücksichtigung von Coulomb und van der Waals Anteilen mittels Kraftfeldmethoden modelliert. Der postulierte repulsive Charakter des Potentials konnte auf die Ladungsverteilung im Molekül und eine Abschwächung des van der Waals Potentials zurückgeführt werden. Weiterhin wurde der Einfluss der variablen HBC Gitterkonstante auf die epitaktische Relation des Gitters zum Metallsubstrat untersucht. Der zweite Teil der Arbeit widmet sich der Untersuchung einer ML 3,4,9,10-Perylenetetracarboxylic dianhydrid (PTCDA) auf einer ML HBC. Dabei wurden, in Abhängigkeit von der HBC Gitterkonstante, insgesamt drei verschiedene Typen von line-on-line bzw. point-on-line Epitaxie nachgewiesen. Im Anschluss an eine Analyse der generellen Eigenschaften solcher epitaktischer Lagen mittels Kraftfeldrechnungen wird eine neue Methode zur Vorhersage der Struktur konkreter Systeme vorgestellt
Ben, Jabra Zouhour. "Study of new heterostructures : silicene on graphene". Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0583.
Pełny tekst źródłaThe topic of this thesis deals with the study of the growth and properties of silicene (Si-ene) on graphene (Gr) on 6H-SiC(0001) with the final goal of forming free-standing (FS) Si-ene on an insulating or semiconductor substrate. I have described the substrate as a function of the CVD processing conditions. When the proportion of H2 is low it is possible to obtain homogeneous Gr on buffer layer (BL) on SiC. The STM and LEED show the superposition of the Gr mesh and the BL reconstruction representative of the epitaxial Gr. When the proportion of H2 is high, the resulting Gr layer is fully hydrogenated. This is a new result as no hydrogen intercalation process has been able to fully hydrogenate (6x6)Gr samples epitaxial on BL until now. For intermediate proportions of H2/Ar, the coexistence of (6x6)Gr and H-Gr is observed. Depending on the proportion of H2 in the gas mixture, either the SiC surface remains passivated during the entire Gr growth and H-Gr is obtained, or the H2 partially or totally desorbs and either both structures coexist or full plate (6x6)Gr is obtained. I have studied the MBE growth of Si-ene on (6x6)Gr. I have shown that it is possible to form Si-ene puddles for deposit thicknesses <0.5MC. We observe the presence of flat areas of 0.2-0.3nm thickness corresponding to a Si-ene monolayer, surrounded by 3D dendritic islands of Si. The Raman spectra show a peak up to 563cm-1 which is the closest value to Si-ene FS ever obtained. This demonstrates the formation of quasi-FS Si-ene. This work contributes to a better understanding of the CVD growth mechanism of Gr and to the advancement of research in the field of epitaxial growth of 2D materials
Bradford, Jonathan. "Growth and characterisation of two-dimensional materials and their heterostructures on sic". Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134400/1/Jonathan_Bradford_Thesis.pdf.
Pełny tekst źródłaKsiążki na temat "Epitaxie van der Waals"
Parsegian, V. Adrian. Van der Waals forces. New York: Cambridge University Press, 2005.
Znajdź pełny tekst źródłaHolwill, Matthew. Nanomechanics in van der Waals Heterostructures. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18529-9.
Pełny tekst źródłaL, Neal Brian, Lenhoff Abraham M i United States. National Aeronautics and Space Administration., red. Van der Waals interactions involving proteins. New York: Biophysical Society, 1996.
Znajdź pełny tekst źródłaKipnis, Aleksandr I͡Akovlevich. Van der Waals and molecular sciences. Oxford: Clarendon Press, 1996.
Znajdź pełny tekst źródła1926-, Rowlinson J. S., i I︠A︡velov B. E, red. Van der Waals and molecular science. Oxford: Clarendon Press, 1996.
Znajdź pełny tekst źródłaHalberstadt, Nadine, i Kenneth C. Janda, red. Dynamics of Polyatomic Van der Waals Complexes. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8009-2.
Pełny tekst źródłaHalberstadt, Nadine. Dynamics of Polyatomic Van der Waals Complexes. Boston, MA: Springer US, 1991.
Znajdź pełny tekst źródłaNATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes (1989 Castéra-Verduzan, France). Dynamics of polyatomic Van der Waals complexes. New York: Plenum Press, 1990.
Znajdź pełny tekst źródłaM, Smirnov B. Cluster ions and Van der Waals molecules. Philadelphia: Gordon and Breach Science Publishers, 1992.
Znajdź pełny tekst źródłaKok, Auke. De verrader: Leven en dood van Anton van der Waals. Wyd. 2. Amsterdam: Arbeiderspers, 1995.
Znajdź pełny tekst źródłaCzęści książek na temat "Epitaxie van der Waals"
Kim, Hyunseok, Wei Kong i Jeehwan Kim. "Advanced Epitaxial Growth of LEDs on Van Der Waals Materials". W Series in Display Science and Technology, 87–114. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5505-0_5.
Pełny tekst źródłaJaegermann, Wolfram, Andreas Klein i Christian Pettenkofer. "Electronic Properties of Van Der Waals-Epitaxy Films and Interfaces". W Electron Spectroscopies Applied to Low-Dimensional Materials, 317–402. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-47126-4_7.
Pełny tekst źródłaKoma, Atsushi. "A New Method to Create Artificially Stacked Layered Materials: Van Der Waals Epitaxy". W New Horizons in Low-Dimensional Electron Systems, 85–95. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-3190-2_6.
Pełny tekst źródłaTiefenbacher, S., C. Pettenkofer i W. Jaegermann. "Van der Waals Epitaxy of Transition Metal Dichalcogenides Using Metal Organic Precursors (MOVDWE)". W Frontiers in Nanoscale Science of Micron/Submicron Devices, 59–65. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1778-1_6.
Pełny tekst źródłaLang, O., R. Rudolph, C. Pettenkofer i W. Jaegermann. "Quantum Well Structures Based on the Layered Compounds InSe and GaSe Grown by Van Der Waals Epitaxy". W Frontiers in Nanoscale Science of Micron/Submicron Devices, 295–301. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1778-1_21.
Pełny tekst źródłaTsuchiya, Taku. "Van der Waals Force". W Encyclopedia of Earth Sciences Series, 1–2. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_329-1.
Pełny tekst źródłaTsuchiya, Taku. "Van der Waals Force". W Encyclopedia of Earth Sciences Series, 1473–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_329.
Pełny tekst źródłaBruylants, Gilles. "Van Der Waals Forces". W Encyclopedia of Astrobiology, 1728–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1647.
Pełny tekst źródłaZhang, Xiang-Jun. "Van der Waals Forces". W Encyclopedia of Tribology, 3945–47. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_457.
Pełny tekst źródłaArndt, T. "Van-der-Waals-Kräfte". W Springer Reference Medizin, 2429–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_3207.
Pełny tekst źródłaStreszczenia konferencji na temat "Epitaxie van der Waals"
Basov, Dmitri N. "Nano-optical probes of Van der Waals interfaces". W Active Photonic Platforms (APP) 2024, redaktorzy Ganapathi S. Subramania i Stavroula Foteinopoulou, 20. SPIE, 2024. http://dx.doi.org/10.1117/12.3027547.
Pełny tekst źródłaZhou, You. "Nonlinear photonics and excitonics in van der Waals heterostructures". W Low-Dimensional Materials and Devices 2024, redaktorzy Nobuhiko P. Kobayashi, A. Alec Talin, Albert V. Davydov i M. Saif Islam, 30. SPIE, 2024. http://dx.doi.org/10.1117/12.3029430.
Pełny tekst źródłaBucher, Tomer, Yaniv Kurman, Kangpeng Wang, Qinghui Yan, Arthur Niedermayr, Ron Ruimy, Harel Nahari i in. "Dynamics of optical vortices in Van der Waals materials". W Active Photonic Platforms (APP) 2024, redaktorzy Ganapathi S. Subramania i Stavroula Foteinopoulou, 11. SPIE, 2024. http://dx.doi.org/10.1117/12.3028729.
Pełny tekst źródłaWang, Yue, Isabel Barth, Manuel Deckart, Donato Conteduca, Guilherme S. Arruda, Panaiot G. Zotev, Sam Randerson i in. "Van der Waals materials for nanophotonics and laser devices". W Active Photonic Platforms (APP) 2024, redaktorzy Ganapathi S. Subramania i Stavroula Foteinopoulou, 43. SPIE, 2024. http://dx.doi.org/10.1117/12.3026846.
Pełny tekst źródłaTrovatello, Chiara, Carino Ferrante, Birui Yang, Cory Dean, Andrea Marini, Giulio Cerullo i P. James Schuck. "Quasi phase matching from periodically poled 3R-stacked transition metal dichalcogenides". W CLEO: Science and Innovations, STh3P.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sth3p.6.
Pełny tekst źródłaWang, S. F., W. K. Fong i C. Surya. "Investigation of low-frequency noise in van der Waals epitaxies". W 2013 International Conference on Noise and Fluctuations (ICNF). IEEE, 2013. http://dx.doi.org/10.1109/icnf.2013.6579007.
Pełny tekst źródłaWang, W., K. K. Leung, W. K. Fong, S. F. Wang, Y. Y. Y. Hui, S. P. P. Lau i C. Surya. "High quality SnS van der Waals epitaxies on graphene buffer layer". W SPIE Solar Energy + Technology, redaktor Louay A. Eldada. SPIE, 2012. http://dx.doi.org/10.1117/12.930946.
Pełny tekst źródłaLeung, K. K., W. Wang, Y. Y. Hui, S. F. Wang, W. K. Fong, S. P. Lau, C. H. Lam i C. Surya. "MBE growth of van der Waals epitaxy using graphene buffer layer". W 2013 2nd International Symposium on Next-Generation Electronics (ISNE 2013). IEEE, 2013. http://dx.doi.org/10.1109/isne.2013.6512273.
Pełny tekst źródłaKoma, Atsushi. "Van der Waals Epitaxy -A New Method to Prepare Ultrathin Heterostructures-". W 1985 Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1985. http://dx.doi.org/10.7567/ssdm.1985.a-0-4.
Pełny tekst źródłaHong, Young Joon. "Remote and van der Waals epitaxy for vertically stacked micro-LED arrays". W Light-Emitting Devices, Materials, and Applications XXVIII, redaktorzy Martin Strassburg, Jong Kyu Kim i Michael R. Krames. SPIE, 2024. http://dx.doi.org/10.1117/12.2691134.
Pełny tekst źródłaRaporty organizacyjne na temat "Epitaxie van der Waals"
O'Hara, D. J. Molecular Beam Epitaxy and High-Pressure Studies of van der Waals Magnets. Office of Scientific and Technical Information (OSTI), sierpień 2019. http://dx.doi.org/10.2172/1562380.
Pełny tekst źródłaKlots, C. E. (Physics and chemistry of van der Waals particles). Office of Scientific and Technical Information (OSTI), październik 1990. http://dx.doi.org/10.2172/6608231.
Pełny tekst źródłaMak, Kin Fai. Understanding Topological Pseudospin Transport in Van Der Waals' Materials. Office of Scientific and Technical Information (OSTI), maj 2021. http://dx.doi.org/10.2172/1782672.
Pełny tekst źródłaKim, Philip. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, marzec 2015. http://dx.doi.org/10.21236/ada616377.
Pełny tekst źródłaSandler, S. I. The generalized van der Waals theory of pure fluids and mixtures. Office of Scientific and Technical Information (OSTI), czerwiec 1990. http://dx.doi.org/10.2172/6382645.
Pełny tekst źródłaSandler, S. I. (The generalized van der Waals theory of pure fluids and mixtures). Office of Scientific and Technical Information (OSTI), wrzesień 1989. http://dx.doi.org/10.2172/5610422.
Pełny tekst źródłaMenezes, W. J. C., i M. B. Knickelbein. Metal cluster-rare gas van der Waals complexes: Microscopic models of physisorption. Office of Scientific and Technical Information (OSTI), marzec 1994. http://dx.doi.org/10.2172/10132910.
Pełny tekst źródłaMartinez Milian, Luis. Manipulation of the magnetic properties of van der Waals materials through external stimuli. Office of Scientific and Technical Information (OSTI), maj 2024. http://dx.doi.org/10.2172/2350595.
Pełny tekst źródłaGwo, Dz-Hung. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH sub 3. Office of Scientific and Technical Information (OSTI), listopad 1989. http://dx.doi.org/10.2172/7188608.
Pełny tekst źródłaFrench, Roger H., Nicole F. Steinmetz i Yingfang Ma. Long Range van der Waals - London Dispersion Interactions For Biomolecular and Inorganic Nanoscale Assembly. Office of Scientific and Technical Information (OSTI), marzec 2018. http://dx.doi.org/10.2172/1431216.
Pełny tekst źródła