Artykuły w czasopismach na temat „Environmentally-benign design”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Environmentally-benign design”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sinha, Manish, Luke E. K. Achenie i Gennadi M. Ostrovsky. "Environmentally benign solvent design by global optimization". Computers & Chemical Engineering 23, nr 10 (grudzień 1999): 1381–94. http://dx.doi.org/10.1016/s0098-1354(99)00299-9.
Pełny tekst źródłaTAKASU, Akinori. "Environmentally Benign Polyester Design by Room-Temperature Dehydration Polycondensation". KOBUNSHI RONBUNSHU 64, nr 8 (2007): 504–15. http://dx.doi.org/10.1295/koron.64.504.
Pełny tekst źródłaChavali, Sunitha, Bao Lin, David C. Miller i Kyle V. Camarda. "Environmentally-benign transition metal catalyst design using optimization techniques". Computers & Chemical Engineering 28, nr 5 (maj 2004): 605–11. http://dx.doi.org/10.1016/j.compchemeng.2004.02.005.
Pełny tekst źródłaDahmani, Abdelouahid, Zine Aidoun i Nicolas Galanis. "Optimum design of ejector refrigeration systems with environmentally benign fluids". International Journal of Thermal Sciences 50, nr 8 (sierpień 2011): 1562–72. http://dx.doi.org/10.1016/j.ijthermalsci.2011.02.021.
Pełny tekst źródłaThomas, John Meurig, Robert Raja, Gopinathan Sankar, Robert G. Bell i Dewi W. Lewis. "Benign by design. New catalysts for an environmentally conscious age". Pure and Applied Chemistry 73, nr 7 (1.07.2001): 1087–101. http://dx.doi.org/10.1351/pac200173071087.
Pełny tekst źródłaKheawhom, Soorathep, i Masahiko Hirao. "Decision support tools for environmentally benign process design under uncertainty". Computers & Chemical Engineering 28, nr 9 (sierpień 2004): 1715–23. http://dx.doi.org/10.1016/j.compchemeng.2004.01.005.
Pełny tekst źródłaHostrup, Martin, Peter M. Harper i Rafiqul Gani. "Design of environmentally benign processes: integration of solvent design and separation process synthesis". Computers & Chemical Engineering 23, nr 10 (grudzień 1999): 1395–414. http://dx.doi.org/10.1016/s0098-1354(99)00300-2.
Pełny tekst źródłaSakamoto, Ryu, i Keiji Maruoka. "The Design of Environmentally-Benign, High-Performance Organocatalysts for Asymmetric Catalysis". Journal of Synthetic Organic Chemistry, Japan 75, nr 11 (2017): 1141–49. http://dx.doi.org/10.5059/yukigoseikyokaishi.75.1141.
Pełny tekst źródłaDemchuk, Oleg M., Katarzyna Kielar i K. Michał Pietrusiewicz. "Rational design of novel ligands for environmentally benign cross-coupling reactions". Pure and Applied Chemistry 83, nr 3 (31.01.2011): 633–44. http://dx.doi.org/10.1351/pac-con-10-08-06.
Pełny tekst źródłaMabuchi, Mamoru, Kohmei Halada i Tatsuhiko Aizawa. "Barrier-Free Processing of Materials for Environmentally Benign Life-Cycle Design". MATERIALS TRANSACTIONS 43, nr 3 (2002): 285–91. http://dx.doi.org/10.2320/matertrans.43.285.
Pełny tekst źródłaJonuzaj, Suela, Jingyue Cui i Claire S. Adjiman. "Computer-aided design of optimal environmentally benign solvent-based adhesive products". Computers & Chemical Engineering 130 (listopad 2019): 106518. http://dx.doi.org/10.1016/j.compchemeng.2019.106518.
Pełny tekst źródłaHuebschmann, S., D. Kralisch, V. Hessel, U. Krtschil i C. Kompter. "Environmentally Benign Microreaction Process Design by Accompanying (Simplified) Life Cycle Assessment". Chemical Engineering & Technology 32, nr 11 (listopad 2009): 1757–65. http://dx.doi.org/10.1002/ceat.200900337.
Pełny tekst źródłaGhatak, Kamalika, Swastik Basu, Tridip Das, Vidushi Sharma, Hemant Kumar i Dibakar Datta. "Effect of cobalt content on the electrochemical properties and structural stability of NCA type cathode materials". Physical Chemistry Chemical Physics 20, nr 35 (2018): 22805–17. http://dx.doi.org/10.1039/c8cp03237h.
Pełny tekst źródłaYin, Dong-Ya, Jiang Pan, Jie Zhu, You-Yan Liu i Jian-He Xu. "A green-by-design bioprocess for l-carnosine production integrating enzymatic synthesis with membrane separation". Catalysis Science & Technology 9, nr 21 (2019): 5971–78. http://dx.doi.org/10.1039/c9cy01622h.
Pełny tekst źródłaDrexler, Marius, Philipp Haltenort, Thomas A. Zevaco, Ulrich Arnold i Jörg Sauer. "Synthesis of tailored oxymethylene ether (OME) fuels via transacetalization reactions". Sustainable Energy & Fuels 5, nr 17 (2021): 4311–26. http://dx.doi.org/10.1039/d1se00631b.
Pełny tekst źródłaRan, Yang, Yunlong Guo i Yunqi Liu. "Organostannane-free polycondensation and eco-friendly processing strategy for the design of semiconducting polymers in transistors". Materials Horizons 7, nr 8 (2020): 1955–70. http://dx.doi.org/10.1039/d0mh00138d.
Pełny tekst źródłaGriffin, Preston, Selene Ramer, Matthew Winfough i Jakub Kostal. "Practical guide to designing safer ionic liquids for cellulose dissolution using a tiered computational framework". Green Chemistry 22, nr 11 (2020): 3626–37. http://dx.doi.org/10.1039/d0gc00923g.
Pełny tekst źródłaOoi, Jecksin, Denny K. S. Ng i Nishanth Chemmangattuvalappil. "A systematic molecular design framework for an environmentally benign solvent recovery process". MATEC Web of Conferences 268 (2019): 02001. http://dx.doi.org/10.1051/matecconf/201926802001.
Pełny tekst źródłaDuvedi, Amit, i L. E. K. Achenie. "On the design of environmentally benign refrigerant mixtures: a mathematical programming approach". Computers & Chemical Engineering 21, nr 8 (kwiecień 1997): 915–23. http://dx.doi.org/10.1016/s0098-1354(96)00310-9.
Pełny tekst źródłaKaneda, Kiyotomi, Kohsuke Mori, Takayoshi Hara, Tomoo Mizugaki i Kohki Ebitani. "Design of hydroxyapatite-bound transition metal catalysts for environmentally-benign organic syntheses". Catalysis Surveys from Asia 8, nr 4 (grudzień 2004): 231–39. http://dx.doi.org/10.1007/s10563-004-9114-3.
Pełny tekst źródłaThomas, John Meurig, Robert Raja, Gopinathan Sankar, Robert G. Bell i Dewi W. Lewis. "ChemInform Abstract: Benign by Design. New Catalysts for an Environmentally Conscious Age." ChemInform 33, nr 1 (23.05.2010): no. http://dx.doi.org/10.1002/chin.200201299.
Pełny tekst źródłaZong, Enmin, Guobo Huang, Xiaohuan Liu, Weiwei Lei, Shengtao Jiang, Zhongqing Ma, Jifu Wang i Pingan Song. "A lignin-based nano-adsorbent for superfast and highly selective removal of phosphate". Journal of Materials Chemistry A 6, nr 21 (2018): 9971–83. http://dx.doi.org/10.1039/c8ta01449c.
Pełny tekst źródłaDemchuk, Oleg M., i Radomir Jasiński. "Organophosphorus ligands: Recent developments in design, synthesis, and application in environmentally benign catalysis". Phosphorus, Sulfur, and Silicon and the Related Elements 191, nr 2 (1.02.2016): 245–53. http://dx.doi.org/10.1080/10426507.2015.1064921.
Pełny tekst źródłaChanduluru, Hemanth Kumar, i Abimanyu Sugumaran. "Eco-friendly estimation of isosorbide dinitrate and hydralazine hydrochloride using Green Analytical Quality by Design-based UPLC Method". RSC Advances 11, nr 45 (2021): 27820–31. http://dx.doi.org/10.1039/d1ra04843k.
Pełny tekst źródłaZhen, Yanzhong, Chunming Yang, Huidong Shen, Wenwen Xue, Chunrong Gu, Jinghao Feng, Yuecheng Zhang, Feng Fu i Yucang Liang. "Photocatalytic performance and mechanism insights of a S-scheme g-C3N4/Bi2MoO6 heterostructure in phenol degradation and hydrogen evolution reactions under visible light". Physical Chemistry Chemical Physics 22, nr 45 (2020): 26278–88. http://dx.doi.org/10.1039/d0cp02199g.
Pełny tekst źródłaZhang, Guoying, Yinjun Xie, Zhengkun Wang, Yang Liu i Hanmin Huang. "Diboron as a reductant for nickel-catalyzed reductive coupling: rational design and mechanistic studies". Chemical Communications 51, nr 10 (2015): 1850–53. http://dx.doi.org/10.1039/c4cc08703h.
Pełny tekst źródłaEbitani, Kohki, Tomoo Mizugaki, Kohsuke Mori i Kiyotomi Kaneda. "Design of Ruthenium Catalysts Bound to Inorganic Crystalline Materials for Environmentally-Benign Organic Synthesis". Current Organic Chemistry 10, nr 2 (1.01.2006): 241–55. http://dx.doi.org/10.2174/138527206775192906.
Pełny tekst źródłaLee, Hyo-Jun, Natarajan Arumugam, Abdulrahman Almansour, Raju Kumar i Keiji Maruoka. "Design of New Amino Tf-Amide Organocatalysts: Environmentally Benign Approach to Asymmetric Aldol Synthesis". Synlett 30, nr 04 (19.12.2018): 401–4. http://dx.doi.org/10.1055/s-0037-1610408.
Pełny tekst źródłaKunthakudee, Naphaphan, Niti Sunsandee, Boonta Chutvirasakul i Prakorn Ramakul. "Extraction of lycopene from tomato with environmentally benign solvents: Box-Behnken design and optimization". Chemical Engineering Communications 207, nr 4 (10.05.2019): 574–83. http://dx.doi.org/10.1080/00986445.2019.1610882.
Pełny tekst źródłaThomas, John Meurig, Juan Carlos Hernandez-Garrido i Robert G. Bell. "A General Strategy for the Design of New Solid Catalysts for Environmentally Benign Conversions". Topics in Catalysis 52, nr 12 (2.06.2009): 1630–39. http://dx.doi.org/10.1007/s11244-009-9302-5.
Pełny tekst źródłaTakeshita, Tokio, Akihisa Kitagawa, Fumiya Yokosu, Ryo Matsumoto, Toshiki Nokami i Toshiyuki Itoh. "Design of Acyl Donor for Environmentally Benign Acylation of Cellulose Using an Ionic Liquid". Australian Journal of Chemistry 72, nr 2 (2019): 61. http://dx.doi.org/10.1071/ch18253.
Pełny tekst źródłaSuk, Morten, Stefanie Lorenz i Klaus Kümmerer. "Identification of environmentally biodegradable scaffolds for the benign design of quinolones and related substances". Sustainable Chemistry and Pharmacy 31 (kwiecień 2023): 100947. http://dx.doi.org/10.1016/j.scp.2022.100947.
Pełny tekst źródłaLedesma, Julieta, Santiago A. Bortolato, Carlos E. Boschetti i Débora M. Martino. "Optimization of Environmentally Benign Polymers Based on Thymine and Polyvinyl Sulfonate Using Plackett-Burman Design and Surface Response". Journal of Chemistry 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/947137.
Pełny tekst źródłaKumar, Navneet, Anjali Chauhan, Anuj i Prachi. "Green and Benign Strategies for Synthesis of Biologically Active Compounds using Lipase as Biocatalyst". Bulletin of Pure and Applied Sciences-Chemistry 42, nr 1 (20.06.2023): 33–40. http://dx.doi.org/10.48165/bpas.2023.42c.1.6.
Pełny tekst źródłaAcharya, Shakuntala, i Amaresh Chakrabarti. "A conceptual tool for environmentally benign design: development and evaluation of a “proof of concept”". Artificial Intelligence for Engineering Design, Analysis and Manufacturing 34, nr 1 (luty 2020): 30–44. http://dx.doi.org/10.1017/s0890060419000313.
Pełny tekst źródłaThomas, John Meurig, Juan Carlos Hernandez-Garrido i Robert G. Bell. "ChemInform Abstract: A General Strategy for the Design of New Solid Catalysts for Environmentally Benign Conversions". ChemInform 41, nr 21 (25.05.2010): no. http://dx.doi.org/10.1002/chin.201021245.
Pełny tekst źródłaMadhukar, Reddy T., i Kumar M. Ranadheer. "Design, Synthesis and Biological Evaluaion of Novel Indole-Isoxazole Conjugates as Potent Anticancer Agents". Research Journal of Chemistry and Environment 25, nr 10 (25.09.2021): 37–42. http://dx.doi.org/10.25303/2510rjce3742.
Pełny tekst źródłaJoglekar-Athavale, Amruta, i Ganapti S. Shankarling. "Deep eutectic solvent: a green and sustainable alternative for the synthesis of copper phthalocyanine blue and its value added applications". Pigment & Resin Technology 49, nr 4 (25.04.2020): 325–30. http://dx.doi.org/10.1108/prt-09-2019-0083.
Pełny tekst źródłaStrauss, Christopher R., i Robert W. Trainor. "Reactions of Ethyl Indole-2-carboxylate in Aqueous Media at High Temperature". Australian Journal of Chemistry 51, nr 8 (1998): 703. http://dx.doi.org/10.1071/c98084.
Pełny tekst źródłaNeramballi, Abhijna, Tomohiko Sakao, Siri Willskytt i Anne-Marie Tillman. "A design navigator to guide the transition towards environmentally benign product/service systems based on LCA results". Journal of Cleaner Production 277 (grudzień 2020): 124074. http://dx.doi.org/10.1016/j.jclepro.2020.124074.
Pełny tekst źródłaLamberth, Clemens, Stephane Jeanmart, Torsten Luksch i Andrew Plant. "Current Challenges and Trends in the Discovery of Agrochemicals". Science 341, nr 6147 (15.08.2013): 742–46. http://dx.doi.org/10.1126/science.1237227.
Pełny tekst źródłaJose, Diana Elizabeth, U. S. Kanchana, Thomas V. Mathew i Gopinathan Anilkumar. "Recent Developments and Perspectives in the C-Se Cross Coupling Reactions". Current Organic Chemistry 24, nr 11 (11.09.2020): 1230–62. http://dx.doi.org/10.2174/1385272824999200528130131.
Pełny tekst źródłaMcCormick, Alon, i Vijay John. "Consortium for the Molecular Engineering of Dispersant Systems (C-MEDS)". Marine Technology Society Journal 52, nr 6 (1.11.2018): 95–98. http://dx.doi.org/10.4031/mtsj.52.6.12.
Pełny tekst źródłaGrabitz, Elisa, Marco Reich, Oliver Olsson i Klaus Kümmerer. "Using structure biodegradability relationships for environmentally benign design of organosilicons – An experimental comparison of organosilicons and their carbon analogues". Sustainable Chemistry and Pharmacy 18 (grudzień 2020): 100331. http://dx.doi.org/10.1016/j.scp.2020.100331.
Pełny tekst źródłaAhady, Shambalid, Nirendra Dev i Anubha Mandal. "Toward Zero Energy: Active and passive design strategies to achieve net zero Energy Building". International Journal of Advance Research and Innovation 7, nr 1 (2019): 49–61. http://dx.doi.org/10.51976/ijari.711908.
Pełny tekst źródłaSingh, Prashant Kumar, i Prabir Sarkar. "Understanding the priorities of designers for an ecodesign support during environmentally sustainable product development". World Journal of Science, Technology and Sustainable Development 18, nr 1 (2.02.2021): 76–92. http://dx.doi.org/10.1108/wjstsd-12-2020-0101.
Pełny tekst źródłaChao, Dongliang, Wanhai Zhou, Fangxi Xie, Chao Ye, Huan Li, Mietek Jaroniec i Shi-Zhang Qiao. "Roadmap for advanced aqueous batteries: From design of materials to applications". Science Advances 6, nr 21 (maj 2020): eaba4098. http://dx.doi.org/10.1126/sciadv.aba4098.
Pełny tekst źródłaSafaei-Ghomi, Javad, Hossein Shahbazi-Alavi i Pouria Babaei. "One-pot multicomponent synthesis of furo[3,2-c]coumarins promoted by amino-functionalized Fe3O4@SiO2 nanoparticles". Zeitschrift für Naturforschung B 71, nr 8 (1.08.2016): 849–56. http://dx.doi.org/10.1515/znb-2016-0041.
Pełny tekst źródłaThomas, John Meurig. "The societal significance of catalysis and the growing practical importance of single-site heterogeneous catalysts". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, nr 2143 (27.04.2012): 1884–903. http://dx.doi.org/10.1098/rspa.2012.0196.
Pełny tekst źródłaJiang, Tao, Elizabeth L. Magnotti i Vincent P. Conticello. "Geometrical frustration as a potential design principle for peptide-based assemblies". Interface Focus 7, nr 6 (20.10.2017): 20160141. http://dx.doi.org/10.1098/rsfs.2016.0141.
Pełny tekst źródła