Artykuły w czasopismach na temat „ENSEMBLE LEARNING MODELS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „ENSEMBLE LEARNING MODELS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
GURBYCH, A. "METHOD SUPER LEARNING FOR DETERMINATION OF MOLECULAR RELATIONSHIP". Herald of Khmelnytskyi National University. Technical sciences 307, nr 2 (2.05.2022): 14–24. http://dx.doi.org/10.31891/2307-5732-2022-307-2-14-24.
Pełny tekst źródłaACOSTA-MENDOZA, NIUSVEL, ALICIA MORALES-REYES, HUGO JAIR ESCALANTE i ANDRÉS GAGO-ALONSO. "LEARNING TO ASSEMBLE CLASSIFIERS VIA GENETIC PROGRAMMING". International Journal of Pattern Recognition and Artificial Intelligence 28, nr 07 (14.10.2014): 1460005. http://dx.doi.org/10.1142/s0218001414600052.
Pełny tekst źródłaSiswoyo, Bambang, Zuraida Abal Abas, Ahmad Naim Che Pee, Rita Komalasari i Nano Suryana. "Ensemble machine learning algorithm optimization of bankruptcy prediction of bank". IAES International Journal of Artificial Intelligence (IJ-AI) 11, nr 2 (1.06.2022): 679. http://dx.doi.org/10.11591/ijai.v11.i2.pp679-686.
Pełny tekst źródłaHuang, Haifeng, Lei Huang, Rongjia Song, Feng Jiao i Tao Ai. "Bus Single-Trip Time Prediction Based on Ensemble Learning". Computational Intelligence and Neuroscience 2022 (11.08.2022): 1–24. http://dx.doi.org/10.1155/2022/6831167.
Pełny tekst źródłaRuaud, Albane, Niklas Pfister, Ruth E. Ley i Nicholas D. Youngblut. "Interpreting tree ensemble machine learning models with endoR". PLOS Computational Biology 18, nr 12 (14.12.2022): e1010714. http://dx.doi.org/10.1371/journal.pcbi.1010714.
Pełny tekst źródłaKhanna, Samarth, i Kabir Nagpal. "Sign Language Interpretation using Ensembled Deep Learning Models". ITM Web of Conferences 53 (2023): 01003. http://dx.doi.org/10.1051/itmconf/20235301003.
Pełny tekst źródłaAlazba, Amal, i Hamoud Aljamaan. "Software Defect Prediction Using Stacking Generalization of Optimized Tree-Based Ensembles". Applied Sciences 12, nr 9 (30.04.2022): 4577. http://dx.doi.org/10.3390/app12094577.
Pełny tekst źródłaSonawane, Deepkanchan Nanasaheb. "Ensemble Learning For Increasing Accuracy Data Models". IOSR Journal of Computer Engineering 9, nr 1 (2013): 35–37. http://dx.doi.org/10.9790/0661-0913537.
Pełny tekst źródłaLi, Ziyue, Kan Ren, Yifan Yang, Xinyang Jiang, Yuqing Yang i Dongsheng Li. "Towards Inference Efficient Deep Ensemble Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 7 (26.06.2023): 8711–19. http://dx.doi.org/10.1609/aaai.v37i7.26048.
Pełny tekst źródłaAbdillah, Abid Famasya, Cornelius Bagus Purnama Putra, Apriantoni Apriantoni, Safitri Juanita i Diana Purwitasari. "Ensemble-based Methods for Multi-label Classification on Biomedical Question-Answer Data". Journal of Information Systems Engineering and Business Intelligence 8, nr 1 (26.04.2022): 42–50. http://dx.doi.org/10.20473/jisebi.8.1.42-50.
Pełny tekst źródłaSaphal, Rohan, Balaraman Ravindran, Dheevatsa Mudigere, Sasikanth Avancha i Bharat Kaul. "ERLP: Ensembles of Reinforcement Learning Policies (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 10 (3.04.2020): 13905–6. http://dx.doi.org/10.1609/aaai.v34i10.7225.
Pełny tekst źródłaQutub, Aseel, Asmaa Al-Mehmadi, Munirah Al-Hssan, Ruyan Aljohani i Hanan S. Alghamdi. "Prediction of Employee Attrition Using Machine Learning and Ensemble Methods". International Journal of Machine Learning and Computing 11, nr 2 (marzec 2021): 110–14. http://dx.doi.org/10.18178/ijmlc.2021.11.2.1022.
Pełny tekst źródłaQuartulli, Marco, Amaia Gil, Ane Miren Florez-Tapia, Pablo Cereijo, Elixabete Ayerbe i Igor G. Olaizola. "Ensemble Surrogate Models for Fast LIB Performance Predictions". Energies 14, nr 14 (8.07.2021): 4115. http://dx.doi.org/10.3390/en14144115.
Pełny tekst źródłaShen, Zhiqiang, Zhankui He i Xiangyang Xue. "MEAL: Multi-Model Ensemble via Adversarial Learning". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 4886–93. http://dx.doi.org/10.1609/aaai.v33i01.33014886.
Pełny tekst źródłaStevens, Christophe AT, Alexander RM Lyons, Kanika I. Dharmayat, Alireza Mahani, Kausik K. Ray, Antonio J. Vallejo-Vaz i Mansour TA Sharabiani. "Ensemble machine learning methods in screening electronic health records: A scoping review". DIGITAL HEALTH 9 (styczeń 2023): 205520762311732. http://dx.doi.org/10.1177/20552076231173225.
Pełny tekst źródłaChang-You Zhang, Chang-You Zhang, Jing-Jing Wang Chang-You Zhang, Li-Xia Wan Jing-Jing Wang i Ruo-Xue Yu Li-Xia Wan. "An Emotional Analysis Method Based on Multi Model Ensemble Learning". 電腦學刊 34, nr 1 (luty 2023): 001–11. http://dx.doi.org/10.53106/199115992023023401001.
Pełny tekst źródłaDeore, Bhushan, Aditya Kyatham i Shubham Narkhede. "A novel approach to ensemble MLP and random forest for network security". ITM Web of Conferences 32 (2020): 03003. http://dx.doi.org/10.1051/itmconf/20203203003.
Pełny tekst źródłaKapil, Divya. "Enhancing MNIST Digit Recognition with Ensemble Learning Techniques". Mathematical Statistician and Engineering Applications 70, nr 2 (26.02.2021): 1362–71. http://dx.doi.org/10.17762/msea.v70i2.2328.
Pełny tekst źródłaWu, Li-Ya, i Sung-Shun Weng. "Ensemble Learning Models for Food Safety Risk Prediction". Sustainability 13, nr 21 (7.11.2021): 12291. http://dx.doi.org/10.3390/su132112291.
Pełny tekst źródłaCampos, David, Miao Zhang, Bin Yang, Tung Kieu, Chenjuan Guo i Christian S. Jensen. "LightTS: Lightweight Time Series Classification with Adaptive Ensemble Distillation". Proceedings of the ACM on Management of Data 1, nr 2 (13.06.2023): 1–27. http://dx.doi.org/10.1145/3589316.
Pełny tekst źródłaChopra, Anjali, i Priyanka Bhilare. "Application of Ensemble Models in Credit Scoring Models". Business Perspectives and Research 6, nr 2 (17.04.2018): 129–41. http://dx.doi.org/10.1177/2278533718765531.
Pełny tekst źródłaKim, Yong-Woon, Yung-Cheol Byun i Addapalli V. N. Krishna. "Portrait Segmentation Using Ensemble of Heterogeneous Deep-Learning Models". Entropy 23, nr 2 (5.02.2021): 197. http://dx.doi.org/10.3390/e23020197.
Pełny tekst źródłaKuo, Ming-Tse, Benny Wei-Yun Hsu, Yi Sheng Lin, Po-Chiung Fang, Hun-Ju Yu, Yu-Ting Hsiao i Vincent S. Tseng. "Deep Learning Approach in Image Diagnosis of Pseudomonas Keratitis". Diagnostics 12, nr 12 (25.11.2022): 2948. http://dx.doi.org/10.3390/diagnostics12122948.
Pełny tekst źródłaOner, Mahir, i Alp Ustundag. "Combining predictive base models using deep ensemble learning". Journal of Intelligent & Fuzzy Systems 39, nr 5 (19.11.2020): 6657–68. http://dx.doi.org/10.3233/jifs-189126.
Pełny tekst źródłaNandhini, A. Sunitha, J. Balakrishna, R. Bala Manikandan i S. Bharath Kumar. "Advanced flood severity detection using ensemble learning models". Journal of Physics: Conference Series 1916, nr 1 (1.05.2021): 012048. http://dx.doi.org/10.1088/1742-6596/1916/1/012048.
Pełny tekst źródłaHu, Pingfan, Zeren Jiao, Zhuoran Zhang i Qingsheng Wang. "Development of Solubility Prediction Models with Ensemble Learning". Industrial & Engineering Chemistry Research 60, nr 30 (21.07.2021): 11627–35. http://dx.doi.org/10.1021/acs.iecr.1c02142.
Pełny tekst źródłaLee, Junho, Wu Wang, Fouzi Harrou i Ying Sun. "Wind Power Prediction Using Ensemble Learning-Based Models". IEEE Access 8 (2020): 61517–27. http://dx.doi.org/10.1109/access.2020.2983234.
Pełny tekst źródłaAsadi, Nazanin, Abdolreza Mirzaei i Ehsan Haghshenas. "Multiple Observations HMM Learning by Aggregating Ensemble Models". IEEE Transactions on Signal Processing 61, nr 22 (listopad 2013): 5767–76. http://dx.doi.org/10.1109/tsp.2013.2280179.
Pełny tekst źródłaLivieris, Ioannis E., Emmanuel Pintelas, Stavros Stavroyiannis i Panagiotis Pintelas. "Ensemble Deep Learning Models for Forecasting Cryptocurrency Time-Series". Algorithms 13, nr 5 (10.05.2020): 121. http://dx.doi.org/10.3390/a13050121.
Pełny tekst źródłaKarim, Zainoolabadien, i Terence L. van Zyl. "Deep/Transfer Learning with Feature Space Ensemble Networks (FeatSpaceEnsNets) and Average Ensemble Networks (AvgEnsNets) for Change Detection Using DInSAR Sentinel-1 and Optical Sentinel-2 Satellite Data Fusion". Remote Sensing 13, nr 21 (31.10.2021): 4394. http://dx.doi.org/10.3390/rs13214394.
Pełny tekst źródłaWang, Yiren, Lijun Wu, Yingce Xia, Tao Qin, ChengXiang Zhai i Tie-Yan Liu. "Transductive Ensemble Learning for Neural Machine Translation". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 6291–98. http://dx.doi.org/10.1609/aaai.v34i04.6097.
Pełny tekst źródłaGagne, David John, Amy McGovern i Ming Xue. "Machine Learning Enhancement of Storm-Scale Ensemble Probabilistic Quantitative Precipitation Forecasts". Weather and Forecasting 29, nr 4 (22.07.2014): 1024–43. http://dx.doi.org/10.1175/waf-d-13-00108.1.
Pełny tekst źródłaJoshi, Gaurav. "Implementation of Isotension Ensemble in Deep Learning". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 9, nr 2 (30.12.2018): 576–86. http://dx.doi.org/10.17762/turcomat.v9i2.13861.
Pełny tekst źródłaStrobach, Ehud, i Golan Bel. "Decadal Climate Predictions Using Sequential Learning Algorithms". Journal of Climate 29, nr 10 (6.05.2016): 3787–809. http://dx.doi.org/10.1175/jcli-d-15-0648.1.
Pełny tekst źródłaNai-Arun, Nongyao, i Punnee Sittidech. "Ensemble Learning Model for Diabetes Classification". Advanced Materials Research 931-932 (maj 2014): 1427–31. http://dx.doi.org/10.4028/www.scientific.net/amr.931-932.1427.
Pełny tekst źródłaNakata, Norio, i Tsuyoshi Siina. "Ensemble Learning of Multiple Models Using Deep Learning for Multiclass Classification of Ultrasound Images of Hepatic Masses". Bioengineering 10, nr 1 (5.01.2023): 69. http://dx.doi.org/10.3390/bioengineering10010069.
Pełny tekst źródłaA, Prof Ajil, Tanvi Jain, T. M. Namratha, Vismaya S i Thummaluru Ganga Lakshmi. "Detection of PCOS using Ensemble Models". International Journal for Research in Applied Science and Engineering Technology 11, nr 5 (31.05.2023): 420–25. http://dx.doi.org/10.22214/ijraset.2023.51426.
Pełny tekst źródłaKurilová, Veronika, Szabolcs Rajcsányi, Zuzana Rábeková, Jarmila Pavlovičová, Miloš Oravec i Nora Majtánová. "Detecting glaucoma from fundus images using ensemble learning". Journal of Electrical Engineering 74, nr 4 (1.08.2023): 328–35. http://dx.doi.org/10.2478/jee-2023-0040.
Pełny tekst źródłaJaruskova, K., i S. Vallecorsa. "Ensemble Models for Calorimeter Simulations". Journal of Physics: Conference Series 2438, nr 1 (1.02.2023): 012080. http://dx.doi.org/10.1088/1742-6596/2438/1/012080.
Pełny tekst źródłaHozhyi, O. P., O. O. Zhebko, I. O. Kalinina i T. A. Hannichenko. "Іntelligent classification system based on ensemble methods". System technologies 3, nr 146 (11.05.2023): 61–75. http://dx.doi.org/10.34185/1562-9945-3-146-2023-07.
Pełny tekst źródłaFarias, G., E. Fabregas, I. Martínez, J. Vega, S. Dormido-Canto i H. Vargas. "Nuclear Fusion Pattern Recognition by Ensemble Learning". Complexity 2021 (29.06.2021): 1–9. http://dx.doi.org/10.1155/2021/1207167.
Pełny tekst źródłaWhitaker, Tim, i Darrell Whitley. "Prune and Tune Ensembles: Low-Cost Ensemble Learning with Sparse Independent Subnetworks". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 8 (28.06.2022): 8638–46. http://dx.doi.org/10.1609/aaai.v36i8.20842.
Pełny tekst źródłaSaleh, Hager, Sherif Mostafa, Lubna Abdelkareim Gabralla, Ahmad O. Aseeri i Shaker El-Sappagh. "Enhanced Arabic Sentiment Analysis Using a Novel Stacking Ensemble of Hybrid and Deep Learning Models". Applied Sciences 12, nr 18 (7.09.2022): 8967. http://dx.doi.org/10.3390/app12188967.
Pełny tekst źródłaBilotserkovskyy, V. V., S. G. Udovenko i L. E. Chala. "Method of neural network recognition of falsified images". Bionics of Intelligence 2, nr 95 (2.12.2020): 32–42. http://dx.doi.org/10.30837/bi.2020.2(95).05.
Pełny tekst źródłaThapa, Niraj, Zhipeng Liu, Addison Shaver, Albert Esterline, Balakrishna Gokaraju i Kaushik Roy. "Secure Cyber Defense: An Analysis of Network Intrusion-Based Dataset CCD-IDSv1 with Machine Learning and Deep Learning Models". Electronics 10, nr 15 (21.07.2021): 1747. http://dx.doi.org/10.3390/electronics10151747.
Pełny tekst źródłaNithin, V. Joe, i Prof S. Pallam Setty. "Prediction of Diabetes Using Ensemble Learning". International Journal for Research in Applied Science and Engineering Technology 10, nr 10 (31.10.2022): 932–35. http://dx.doi.org/10.22214/ijraset.2022.47114.
Pełny tekst źródłaIskanderani, Ahmed I., Ibrahim M. Mehedi, Abdulah Jeza Aljohani, Mohammad Shorfuzzaman, Farzana Akther, Thangam Palaniswamy, Shaikh Abdul Latif, Abdul Latif i Aftab Alam. "Artificial Intelligence and Medical Internet of Things Framework for Diagnosis of Coronavirus Suspected Cases". Journal of Healthcare Engineering 2021 (28.05.2021): 1–7. http://dx.doi.org/10.1155/2021/3277988.
Pełny tekst źródłaRajaraman, Sivaramakrishnan, Feng Yang, Ghada Zamzmi, Zhiyun Xue i Sameer K. Antani. "A Systematic Evaluation of Ensemble Learning Methods for Fine-Grained Semantic Segmentation of Tuberculosis-Consistent Lesions in Chest Radiographs". Bioengineering 9, nr 9 (24.08.2022): 413. http://dx.doi.org/10.3390/bioengineering9090413.
Pełny tekst źródłaKo, Hyungjin, Jaewook Lee, Junyoung Byun, Bumho Son i Saerom Park. "Loss-Driven Adversarial Ensemble Deep Learning for On-Line Time Series Analysis". Sustainability 11, nr 12 (25.06.2019): 3489. http://dx.doi.org/10.3390/su11123489.
Pełny tekst źródłaKlaar, Anne Carolina Rodrigues, Stefano Frizzo Stefenon, Laio Oriel Seman, Viviana Cocco Mariani i Leandro dos Santos Coelho. "Structure Optimization of Ensemble Learning Methods and Seasonal Decomposition Approaches to Energy Price Forecasting in Latin America: A Case Study about Mexico". Energies 16, nr 7 (31.03.2023): 3184. http://dx.doi.org/10.3390/en16073184.
Pełny tekst źródła