Gotowa bibliografia na temat „ENSEMBLE LEARNING MODELS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „ENSEMBLE LEARNING MODELS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "ENSEMBLE LEARNING MODELS"
GURBYCH, A. "METHOD SUPER LEARNING FOR DETERMINATION OF MOLECULAR RELATIONSHIP". Herald of Khmelnytskyi National University. Technical sciences 307, nr 2 (2.05.2022): 14–24. http://dx.doi.org/10.31891/2307-5732-2022-307-2-14-24.
Pełny tekst źródłaACOSTA-MENDOZA, NIUSVEL, ALICIA MORALES-REYES, HUGO JAIR ESCALANTE i ANDRÉS GAGO-ALONSO. "LEARNING TO ASSEMBLE CLASSIFIERS VIA GENETIC PROGRAMMING". International Journal of Pattern Recognition and Artificial Intelligence 28, nr 07 (14.10.2014): 1460005. http://dx.doi.org/10.1142/s0218001414600052.
Pełny tekst źródłaSiswoyo, Bambang, Zuraida Abal Abas, Ahmad Naim Che Pee, Rita Komalasari i Nano Suryana. "Ensemble machine learning algorithm optimization of bankruptcy prediction of bank". IAES International Journal of Artificial Intelligence (IJ-AI) 11, nr 2 (1.06.2022): 679. http://dx.doi.org/10.11591/ijai.v11.i2.pp679-686.
Pełny tekst źródłaHuang, Haifeng, Lei Huang, Rongjia Song, Feng Jiao i Tao Ai. "Bus Single-Trip Time Prediction Based on Ensemble Learning". Computational Intelligence and Neuroscience 2022 (11.08.2022): 1–24. http://dx.doi.org/10.1155/2022/6831167.
Pełny tekst źródłaRuaud, Albane, Niklas Pfister, Ruth E. Ley i Nicholas D. Youngblut. "Interpreting tree ensemble machine learning models with endoR". PLOS Computational Biology 18, nr 12 (14.12.2022): e1010714. http://dx.doi.org/10.1371/journal.pcbi.1010714.
Pełny tekst źródłaKhanna, Samarth, i Kabir Nagpal. "Sign Language Interpretation using Ensembled Deep Learning Models". ITM Web of Conferences 53 (2023): 01003. http://dx.doi.org/10.1051/itmconf/20235301003.
Pełny tekst źródłaAlazba, Amal, i Hamoud Aljamaan. "Software Defect Prediction Using Stacking Generalization of Optimized Tree-Based Ensembles". Applied Sciences 12, nr 9 (30.04.2022): 4577. http://dx.doi.org/10.3390/app12094577.
Pełny tekst źródłaSonawane, Deepkanchan Nanasaheb. "Ensemble Learning For Increasing Accuracy Data Models". IOSR Journal of Computer Engineering 9, nr 1 (2013): 35–37. http://dx.doi.org/10.9790/0661-0913537.
Pełny tekst źródłaLi, Ziyue, Kan Ren, Yifan Yang, Xinyang Jiang, Yuqing Yang i Dongsheng Li. "Towards Inference Efficient Deep Ensemble Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 7 (26.06.2023): 8711–19. http://dx.doi.org/10.1609/aaai.v37i7.26048.
Pełny tekst źródłaAbdillah, Abid Famasya, Cornelius Bagus Purnama Putra, Apriantoni Apriantoni, Safitri Juanita i Diana Purwitasari. "Ensemble-based Methods for Multi-label Classification on Biomedical Question-Answer Data". Journal of Information Systems Engineering and Business Intelligence 8, nr 1 (26.04.2022): 42–50. http://dx.doi.org/10.20473/jisebi.8.1.42-50.
Pełny tekst źródłaRozprawy doktorskie na temat "ENSEMBLE LEARNING MODELS"
He, Wenbin. "Exploration and Analysis of Ensemble Datasets with Statistical and Deep Learning Models". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574695259847734.
Pełny tekst źródłaKim, Jinhan. "J-model : an open and social ensemble learning architecture for classification". Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/7672.
Pełny tekst źródłaGharroudi, Ouadie. "Ensemble multi-label learning in supervised and semi-supervised settings". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1333/document.
Pełny tekst źródłaMulti-label learning is a specific supervised learning problem where each instance can be associated with multiple target labels simultaneously. Multi-label learning is ubiquitous in machine learning and arises naturally in many real-world applications such as document classification, automatic music tagging and image annotation. In this thesis, we formulate the multi-label learning as an ensemble learning problem in order to provide satisfactory solutions for both the multi-label classification and the feature selection tasks, while being consistent with respect to any type of objective loss function. We first discuss why the state-of-the art single multi-label algorithms using an effective committee of multi-label models suffer from certain practical drawbacks. We then propose a novel strategy to build and aggregate k-labelsets based committee in the context of ensemble multi-label classification. We then analyze the effect of the aggregation step within ensemble multi-label approaches in depth and investigate how this aggregation impacts the prediction performances with respect to the objective multi-label loss metric. We then address the specific problem of identifying relevant subsets of features - among potentially irrelevant and redundant features - in the multi-label context based on the ensemble paradigm. Three wrapper multi-label feature selection methods based on the Random Forest paradigm are proposed. These methods differ in the way they consider label dependence within the feature selection process. Finally, we extend the multi-label classification and feature selection problems to the semi-supervised setting and consider the situation where only few labelled instances are available. We propose a new semi-supervised multi-label feature selection approach based on the ensemble paradigm. The proposed model combines ideas from co-training and multi-label k-labelsets committee construction in tandem with an inner out-of-bag label feature importance evaluation. Satisfactorily tested on several benchmark data, the approaches developed in this thesis show promise for a variety of applications in supervised and semi-supervised multi-label learning
Henriksson, Aron. "Ensembles of Semantic Spaces : On Combining Models of Distributional Semantics with Applications in Healthcare". Doctoral thesis, Stockholms universitet, Institutionen för data- och systemvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-122465.
Pełny tekst źródłaAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4 and 5: Unpublished conference papers.
High-Performance Data Mining for Drug Effect Detection
Chakraborty, Debaditya. "Detection of Faults in HVAC Systems using Tree-based Ensemble Models and Dynamic Thresholds". University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1543582336141076.
Pełny tekst źródłaLi, Qiongzhu. "Study of Single and Ensemble Machine Learning Models on Credit Data to Detect Underlying Non-performing Loans". Thesis, Uppsala universitet, Statistiska institutionen, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-297080.
Pełny tekst źródłaFranch, Gabriele. "Deep Learning for Spatiotemporal Nowcasting". Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/295096.
Pełny tekst źródłaFranch, Gabriele. "Deep Learning for Spatiotemporal Nowcasting". Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/295096.
Pełny tekst źródłaEkström, Linus, i Andreas Augustsson. "A comperative study of text classification models on invoices : The feasibility of different machine learning algorithms and their accuracy". Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-15647.
Pełny tekst źródłaLundberg, Jacob. "Resource Efficient Representation of Machine Learning Models : investigating optimization options for decision trees in embedded systems". Thesis, Linköpings universitet, Statistik och maskininlärning, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162013.
Pełny tekst źródłaKsiążki na temat "ENSEMBLE LEARNING MODELS"
Kyriakides, George, i Konstantinos G. Margaritis. Hands-On Ensemble Learning with Python: Build Highly Optimized Ensemble Machine Learning Models Using Scikit-Learn and Keras. Packt Publishing, Limited, 2019.
Znajdź pełny tekst źródłaHead, Paul D. The Choral Experience. Redaktorzy Frank Abrahams i Paul D. Head. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199373369.013.3.
Pełny tekst źródłaSummerson, Samantha R., i Caleb Kemere. Multi-electrode Recording of Neural Activity in Awake Behaving Animals. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199939800.003.0004.
Pełny tekst źródłaWheelahan, Leesa. Rethinking Skills Development. Redaktorzy John Buchanan, David Finegold, Ken Mayhew i Chris Warhurst. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199655366.013.30.
Pełny tekst źródłaCzęści książek na temat "ENSEMBLE LEARNING MODELS"
Coqueret, Guillaume, i Tony Guida. "Ensemble models". W Machine Learning for Factor Investing, 173–86. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003121596-14.
Pełny tekst źródłaKumar, Alok, i Mayank Jain. "Mixing Models". W Ensemble Learning for AI Developers, 31–48. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5940-5_3.
Pełny tekst źródłaBisong, Ekaba. "Ensemble Methods". W Building Machine Learning and Deep Learning Models on Google Cloud Platform, 269–86. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4470-8_23.
Pełny tekst źródłaHennicker, Rolf, Alexander Knapp i Martin Wirsing. "Epistemic Ensembles". W Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning, 110–26. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-19759-8_8.
Pełny tekst źródłaJuniper, Matthew P. "Machine Learning for Thermoacoustics". W Lecture Notes in Energy, 307–37. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-16248-0_11.
Pełny tekst źródłaBrazdil, Pavel, Jan N. van Rijn, Carlos Soares i Joaquin Vanschoren. "Metalearning in Ensemble Methods". W Metalearning, 189–200. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-67024-5_10.
Pełny tekst źródłaDritsas, Elias, Maria Trigka i Phivos Mylonas. "Ensemble Machine Learning Models for Breast Cancer Identification". W IFIP Advances in Information and Communication Technology, 303–11. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34171-7_24.
Pełny tekst źródłaDi Napoli, Mariano, Giuseppe Bausilio, Andrea Cevasco, Pierluigi Confuorto, Andrea Mandarino i Domenico Calcaterra. "Landslide Susceptibility Assessment by Ensemble-Based Machine Learning Models". W Understanding and Reducing Landslide Disaster Risk, 225–31. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60227-7_24.
Pełny tekst źródłaMokeev, Vladimir. "An Ensemble of Learning Machine Models for Plant Recognition". W Communications in Computer and Information Science, 256–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39575-9_26.
Pełny tekst źródłaSingh, Divjot, i Ashutosh Mishra. "Early Prediction of Alzheimer’s Disease Using Ensemble Learning Models". W Springer Proceedings in Mathematics & Statistics, 459–77. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-15175-0_38.
Pełny tekst źródłaStreszczenia konferencji na temat "ENSEMBLE LEARNING MODELS"
Celikyilmaz, Asli, i Dilek Hakkani-Tur. "Investigation of ensemble models for sequence learning". W ICASSP 2015 - 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. http://dx.doi.org/10.1109/icassp.2015.7178999.
Pełny tekst źródłaKordik, Pavel, i Jan Cerny. "Building predictive models in two stages with meta-learning templates optimized by genetic programming". W 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL). IEEE, 2014. http://dx.doi.org/10.1109/ciel.2014.7015740.
Pełny tekst źródłaKotary, James, Vincenzo Di Vito i Ferdinando Fioretto. "Differentiable Model Selection for Ensemble Learning". W Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/217.
Pełny tekst źródłaK P, Saranyanath, Wei Shi i Jean-Pierre Corriveau. "Cyberbullying Detection using Ensemble Method". W 3rd International Conference on Data Science and Machine Learning (DSML 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.121507.
Pełny tekst źródłaCheung, Catherine, i Zouhair Hamaimou. "Ensemble Integration Methods for Load Estimation". W Vertical Flight Society 78th Annual Forum & Technology Display. The Vertical Flight Society, 2022. http://dx.doi.org/10.4050/f-0078-2022-17553.
Pełny tekst źródłaHoppe, F., i G. Sommer. "Ensemble Learning for Hierarchies of Locally Arranged Models". W The 2006 IEEE International Joint Conference on Neural Network Proceedings. IEEE, 2006. http://dx.doi.org/10.1109/ijcnn.2006.247246.
Pełny tekst źródłaByeon, Yeong-Hyeon, Sung-Bum Pan i Keun-Chang Kwak. "Ensemble Deep Learning Models for ECG-based Biometrics". W 2020 Cybernetics & Informatics (K&I). IEEE, 2020. http://dx.doi.org/10.1109/ki48306.2020.9039871.
Pełny tekst źródłaK, Fahmida Minna, i Maya Mohan. "Ensemble Learning Models for Drug Target Interaction Prediction". W 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). IEEE, 2022. http://dx.doi.org/10.1109/icaaic53929.2022.9793081.
Pełny tekst źródłaPanyushkin, Georgy, i Vitalii Varkentin. "Network Traffic and Ensemble Models in Machine Learning". W 2021 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). IEEE, 2021. http://dx.doi.org/10.1109/itqmis53292.2021.9642907.
Pełny tekst źródłaE M, Roopa Devi, R. Shanthakumari, R. Rajadevi, Anoj Roshan M, Hari V i Lakshmanan S. "Forecasting Air Quality Pollutants using Ensemble Learning Models". W 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN). IEEE, 2023. http://dx.doi.org/10.1109/vitecon58111.2023.10157087.
Pełny tekst źródłaRaporty organizacyjne na temat "ENSEMBLE LEARNING MODELS"
de Luis, Mercedes, Emilio Rodríguez i Diego Torres. Machine learning applied to active fixed-income portfolio management: a Lasso logit approach. Madrid: Banco de España, wrzesień 2023. http://dx.doi.org/10.53479/33560.
Pełny tekst źródłaHart, Carl R., D. Keith Wilson, Chris L. Pettit i Edward T. Nykaza. Machine-Learning of Long-Range Sound Propagation Through Simulated Atmospheric Turbulence. U.S. Army Engineer Research and Development Center, lipiec 2021. http://dx.doi.org/10.21079/11681/41182.
Pełny tekst źródłaLasko, Kristofer, i Elena Sava. Semi-automated land cover mapping using an ensemble of support vector machines with moderate resolution imagery integrated into a custom decision support tool. Engineer Research and Development Center (U.S.), listopad 2021. http://dx.doi.org/10.21079/11681/42402.
Pełny tekst źródłaPettit, Chris, i D. Wilson. A physics-informed neural network for sound propagation in the atmospheric boundary layer. Engineer Research and Development Center (U.S.), czerwiec 2021. http://dx.doi.org/10.21079/11681/41034.
Pełny tekst źródłaPedersen, Gjertrud. Symphonies Reframed. Norges Musikkhøgskole, sierpień 2018. http://dx.doi.org/10.22501/nmh-ar.481294.
Pełny tekst źródłaMaher, Nicola, Pedro DiNezio, Antonietta Capotondi i Jennifer Kay. Identifying precursors of daily to seasonal hydrological extremes over the USA using deep learning techniques and climate model ensembles. Office of Scientific and Technical Information (OSTI), kwiecień 2021. http://dx.doi.org/10.2172/1769719.
Pełny tekst źródłaDouglas, Thomas, i Caiyun Zhang. Machine learning analyses of remote sensing measurements establish strong relationships between vegetation and snow depth in the boreal forest of Interior Alaska. Engineer Research and Development Center (U.S.), lipiec 2021. http://dx.doi.org/10.21079/11681/41222.
Pełny tekst źródła