Artykuły w czasopismach na temat „Energy Storage Materials Metal-Sulfur Batteries”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Energy Storage Materials Metal-Sulfur Batteries”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Xie, Xing-Chen, Ke-Jing Huang i Xu Wu. "Metal–organic framework derived hollow materials for electrochemical energy storage". Journal of Materials Chemistry A 6, nr 16 (2018): 6754–71. http://dx.doi.org/10.1039/c8ta00612a.
Pełny tekst źródłaChen, Liping, Xifei Li i Yunhua Xu. "Recent advances of polar transition-metal sulfides host materials for advanced lithium–sulfur batteries". Functional Materials Letters 11, nr 06 (grudzień 2018): 1840010. http://dx.doi.org/10.1142/s1793604718400106.
Pełny tekst źródłaZhu, Mengqi, Songmei Li, Bin Li i Shubin Yang. "A liquid metal-based self-adaptive sulfur–gallium composite for long-cycling lithium–sulfur batteries". Nanoscale 11, nr 2 (2019): 412–17. http://dx.doi.org/10.1039/c8nr08625g.
Pełny tekst źródłaWang, Jie, Ping Nie, Bing Ding, Shengyang Dong, Xiaodong Hao, Hui Dou i Xiaogang Zhang. "Biomass derived carbon for energy storage devices". Journal of Materials Chemistry A 5, nr 6 (2017): 2411–28. http://dx.doi.org/10.1039/c6ta08742f.
Pełny tekst źródłaHuang, Zongle, Wenting Sun, Zhipeng Sun, Run Ding i Xuebin Wang. "Graphene-Based Materials for the Separator Functionalization of Lithium-Ion/Metal/Sulfur Batteries". Materials 16, nr 12 (18.06.2023): 4449. http://dx.doi.org/10.3390/ma16124449.
Pełny tekst źródłaWang, Yanjie, Yingjie Zhang, Hongyu Cheng, Zhicong Ni, Ying Wang, Guanghui Xia, Xue Li i Xiaoyuan Zeng. "Research Progress toward Room Temperature Sodium Sulfur Batteries: A Review". Molecules 26, nr 6 (11.03.2021): 1535. http://dx.doi.org/10.3390/molecules26061535.
Pełny tekst źródłaIkram, Rabia, Badrul Mohamed Jan, Syed Atif Pervez, Vassilis M. Papadakis, Waqas Ahmad, Rani Bushra, George Kenanakis i Masud Rana. "Recent Advancements of N-Doped Graphene for Rechargeable Batteries: A Review". Crystals 10, nr 12 (26.11.2020): 1080. http://dx.doi.org/10.3390/cryst10121080.
Pełny tekst źródłaSong, Zihui, Wanyuan Jiang, Xigao Jian i Fangyuan Hu. "Advanced Nanostructured Materials for Electrocatalysis in Lithium–Sulfur Batteries". Nanomaterials 12, nr 23 (6.12.2022): 4341. http://dx.doi.org/10.3390/nano12234341.
Pełny tekst źródłaWang, Ying, Rui Ai, Fei Wang, Xiuqiong Hu, Yuejing Zeng, Jiyue Hou, Jinbao Zhao, Yingjie Zhang, Yiyong Zhang i Xue Li. "Research Progress on Multifunctional Modified Separator for Lithium–Sulfur Batteries". Polymers 15, nr 4 (16.02.2023): 993. http://dx.doi.org/10.3390/polym15040993.
Pełny tekst źródłaChung, Sheng-Heng, i Cun-Sheng Cheng. "(Digital Presentation) A Design of Nickel/Sulfur Energy-Storage Materials for Electrochemical Lithium-Sulfur Cells". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 542. http://dx.doi.org/10.1149/ma2022-024542mtgabs.
Pełny tekst źródłaChen, Wenshuai, Haipeng Yu, Sang-Young Lee, Tong Wei, Jian Li i Zhuangjun Fan. "Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage". Chemical Society Reviews 47, nr 8 (2018): 2837–72. http://dx.doi.org/10.1039/c7cs00790f.
Pełny tekst źródłaShi, Wenhui, Xilian Xu, Lin Zhang, Wenxian Liu i Xiehong Cao. "Metal-organic framework-derived structures for next-generation rechargeable batteries". Functional Materials Letters 11, nr 06 (grudzień 2018): 1830006. http://dx.doi.org/10.1142/s1793604718300062.
Pełny tekst źródłaDutt, Sunil, Ashwani Kumar i Shivendra Singh. "Synthesis of Metal Organic Frameworks (MOFs) and Their Derived Materials for Energy Storage Applications". Clean Technologies 5, nr 1 (20.01.2023): 140–66. http://dx.doi.org/10.3390/cleantechnol5010009.
Pełny tekst źródłaChiu, Li-Ling, i Sheng-Heng Chung. "Electrochemically Stable Rechargeable Lithium–Sulfur Batteries Equipped with an Electrospun Polyacrylonitrile Nanofiber Film". Polymers 15, nr 6 (15.03.2023): 1460. http://dx.doi.org/10.3390/polym15061460.
Pełny tekst źródłaKurmanbayeva, I., A. Mentbayeva, A. Nurpeissova i Z. Bakenov. "Advanced Battery Materials Research at Nazarbayev University: Review". Eurasian Chemico-Technological Journal 23, nr 3 (10.11.2021): 199. http://dx.doi.org/10.18321/ectj1103.
Pełny tekst źródłaJin, Qianwen, Yajing Yan, Chenchen Hu, Yongguang Zhang, Xi Wang i Chunyong Liang. "Carbon Nanotube-Modified Nickel Hydroxide as Cathode Materials for High-Performance Li-S Batteries". Nanomaterials 12, nr 5 (7.03.2022): 886. http://dx.doi.org/10.3390/nano12050886.
Pełny tekst źródłaBhargav, Amruth, i Arumugam Manthiram. "Using Organosulfur Materials to Solve Critical Challenges Facing Lithium-Sulfur Batteries". ECS Meeting Abstracts MA2022-02, nr 7 (9.10.2022): 2577. http://dx.doi.org/10.1149/ma2022-0272577mtgabs.
Pełny tekst źródłaLionetto, Francesca, Sonia Bagheri i Claudio Mele. "Sustainable Materials from Fish Industry Waste for Electrochemical Energy Systems". Energies 14, nr 23 (26.11.2021): 7928. http://dx.doi.org/10.3390/en14237928.
Pełny tekst źródłaChen, Qiang. "Investigation of High-Performance Electrode Materials: Processing and Storage Mechanism". Materials 15, nr 24 (16.12.2022): 8987. http://dx.doi.org/10.3390/ma15248987.
Pełny tekst źródłaAruchamy, Kanakaraj, Subramaniyan Ramasundaram, Sivasubramani Divya, Murugesan Chandran, Kyusik Yun i Tae Hwan Oh. "Gel Polymer Electrolytes: Advancing Solid-State Batteries for High-Performance Applications". Gels 9, nr 7 (21.07.2023): 585. http://dx.doi.org/10.3390/gels9070585.
Pełny tekst źródłaZhan, Xiaowen, Minyuan M. Li, J. Mark Weller, Vincent L. Sprenkle i Guosheng Li. "Recent Progress in Cathode Materials for Sodium-Metal Halide Batteries". Materials 14, nr 12 (12.06.2021): 3260. http://dx.doi.org/10.3390/ma14123260.
Pełny tekst źródłaHe, Xiang Ming, Wei Hua Pu, Jian Jun Li, Chang Yin Jiang, Chun Rong Wan i Shi Chao Zhang. "Nano Sulfur Composite for Li/S Polymer Secondary Batteries". Key Engineering Materials 336-338 (kwiecień 2007): 541–44. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.541.
Pełny tekst źródłaMeyerson, Melissa L., Adam M. Maraschky i Leo J. Small. "Higher Energy Density Mediated Lithium-Sulfur Flow Batteries". ECS Meeting Abstracts MA2022-02, nr 2 (9.10.2022): 109. http://dx.doi.org/10.1149/ma2022-022109mtgabs.
Pełny tekst źródłaIslam, Mahbub, i Rahul Jayan. "Single-Atom Electrocatalyst for Engineered Cathode Interfaces in Sodium-Sulfur Batteries". ECS Meeting Abstracts MA2022-01, nr 46 (7.07.2022): 1963. http://dx.doi.org/10.1149/ma2022-01461963mtgabs.
Pełny tekst źródłaMorag, Ahiud, i Minghao Yu. "Layered electrode materials for non-aqueous multivalent metal batteries". Journal of Materials Chemistry A 9, nr 35 (2021): 19317–45. http://dx.doi.org/10.1039/d1ta03842g.
Pełny tekst źródłaLi, Hai-Wen, Min Zhu, Craig Buckley i Torben Jensen. "Functional Materials Based on Metal Hydrides". Inorganics 6, nr 3 (4.09.2018): 91. http://dx.doi.org/10.3390/inorganics6030091.
Pełny tekst źródłaIslam, Md Shahinul, Mahfuza Mubarak i Ha-Jin Lee. "Hybrid Nanostructured Materials as Electrodes in Energy Storage Devices". Inorganics 11, nr 5 (24.04.2023): 183. http://dx.doi.org/10.3390/inorganics11050183.
Pełny tekst źródłaGong, Gao, Hu i Zhou. "Synthesis and Electrochemical Energy Storage Applications of Micro/Nanostructured Spherical Materials". Nanomaterials 9, nr 9 (27.08.2019): 1207. http://dx.doi.org/10.3390/nano9091207.
Pełny tekst źródłaTabuyo-Martínez, Marina, Bernd Wicklein i Pilar Aranda. "Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries". Beilstein Journal of Nanotechnology 12 (9.09.2021): 995–1020. http://dx.doi.org/10.3762/bjnano.12.75.
Pełny tekst źródłaWu, Yinbo, Yaowei Feng, Xiulian Qiu, Fengming Ren, Jian Cen, Qingdian Chong, Ye Tian i Wei Yang. "Construction of Polypyrrole-Coated CoSe2 Composite Material for Lithium-Sulfur Battery". Nanomaterials 13, nr 5 (25.02.2023): 865. http://dx.doi.org/10.3390/nano13050865.
Pełny tekst źródłaLi, Fang, Quanhui Liu, Jiawen Hu, Yuezhan Feng, Pengbin He i Jianmin Ma. "Recent advances in cathode materials for rechargeable lithium–sulfur batteries". Nanoscale 11, nr 33 (2019): 15418–39. http://dx.doi.org/10.1039/c9nr04415a.
Pełny tekst źródłaLi, Shi, Shi Luo, Liya Rong, Linqing Wang, Ziyang Xi, Yong Liu, Yuheng Zhou, Zhongmin Wan i Xiangzhong Kong. "Innovative Materials for Energy Storage and Conversion". Molecules 27, nr 13 (21.06.2022): 3989. http://dx.doi.org/10.3390/molecules27133989.
Pełny tekst źródłaHu, Bo, Shuofeng Jian, Ge Yin, Wenhao Feng, Yaowen Cao, Jiaxuan Bai, Yanan Lai, Huiyun Tan i Yifan Dong. "Hetero-Element-Doped Molybdenum Oxide Materials for Energy Storage Systems". Nanomaterials 11, nr 12 (6.12.2021): 3302. http://dx.doi.org/10.3390/nano11123302.
Pełny tekst źródłaSamson Temitayo Olatunde i Peter Etinosa Igbinidu-Uwuigbe. "Dendrite formation in electrochemical energy storage systems". Global Journal of Engineering and Technology Advances 12, nr 3 (30.09.2022): 095–104. http://dx.doi.org/10.30574/gjeta.2022.12.3.0166.
Pełny tekst źródłaKim, Hye Ran, Jae Rin Shim, San Deul Ryoo i Yongju Jung. "Dual-Layer Sulfur Cathode Integrating Sulfur Composite Electrode and Binder-Free Sulfur Thin Film for High Loading Li-S Batteries". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 419. http://dx.doi.org/10.1149/ma2022-024419mtgabs.
Pełny tekst źródłaLateef, Saheed Adewale, Marjanul Manjum, William Earl Mustain i Golareh Jalilvand. "The Effect of Binder on the Structure and Performance of Sulfur Cathodes in Lithium-Sulfur Batteries". ECS Meeting Abstracts MA2022-02, nr 6 (9.10.2022): 628. http://dx.doi.org/10.1149/ma2022-026628mtgabs.
Pełny tekst źródłaAmaral, Murilo M., Shakir Bin Mujib, Hudson Zanin i Gurpreet Singh. "A perspective on silicon-based polymer-derived ceramics materials for beyond lithium-ion batteries". Journal of Physics: Materials 6, nr 2 (3.03.2023): 021001. http://dx.doi.org/10.1088/2515-7639/acbdef.
Pełny tekst źródłaChen, Ao, Weifang Liu, Jun Yan i Kaiyu Liu. "A novel separator modified by titanium dioxide nanotubes/carbon nanotubes composite for high performance lithium-sulfur batteries". Functional Materials Letters 12, nr 02 (kwiecień 2019): 1950016. http://dx.doi.org/10.1142/s1793604719500164.
Pełny tekst źródłaCoskun, Ali. "Tailor-made Functional Polymers for Energy Storage and Environmental Applications". CHIMIA International Journal for Chemistry 74, nr 9 (30.09.2020): 667–73. http://dx.doi.org/10.2533/chimia.2020.667.
Pełny tekst źródłaRyoo, San Deul, Hye Ran Kim, Jae Rin Shim i Yongju Jung. "Surface Functionalization of Mesoporous Silica Enabling Long-Life Lithium-Sulfur Batteries". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 431. http://dx.doi.org/10.1149/ma2022-024431mtgabs.
Pełny tekst źródłaJulien, Christian M. "Advanced Materials for Electrochemical Energy Storage: Lithium-Ion, Lithium-Sulfur, Lithium-Air and Sodium Batteries". International Journal of Molecular Sciences 24, nr 3 (3.02.2023): 3026. http://dx.doi.org/10.3390/ijms24033026.
Pełny tekst źródłaThatsami, N., P. Tangpakonsab, P. Moontragoon, R. Umer, T. Hussain i T. Kaewmaraya. "Two-dimensional titanium carbide (Ti3C2Tx) MXenes to inhibit the shuttle effect in sodium sulfur batteries". Physical Chemistry Chemical Physics 24, nr 7 (2022): 4187–95. http://dx.doi.org/10.1039/d1cp05300k.
Pełny tekst źródłaZhang, Yuxuan, Thomas Kivevele, Han Wook Song i Sunghwan Lee. "(Digital Presentation) Accelerating the Conversion Process of Polysulfides in High Mass Loading Sulfur Cathode for the Longevity Li-S Battery". ECS Meeting Abstracts MA2022-01, nr 2 (7.07.2022): 383. http://dx.doi.org/10.1149/ma2022-012383mtgabs.
Pełny tekst źródłaWei, Huiying, Qicheng Li, Bo Jin i Hui Liu. "Ce-Doped Three-Dimensional Ni/Fe LDH Composite as a Sulfur Host for Lithium–Sulfur Batteries". Nanomaterials 13, nr 15 (3.08.2023): 2244. http://dx.doi.org/10.3390/nano13152244.
Pełny tekst źródłaMa, Delong, Ruili Zhang, Xun Hu, Yang Chen, Chenfa Xiao, Fei He, Shu Zhang, Jianbing Chen i Guangzhi Hu. "Insights into the electrochemical performance of metal fluoride cathodes for lithium batteries". Energy Materials 2, nr 3 (2022): 200027. http://dx.doi.org/10.20517/energymater.2022.23.
Pełny tekst źródłaZhang, Congli, Zeyu Geng, Ting Meng, Fei Ma, Xueya Xu, Yang Liu i Haifeng Zhang. "Multi−Functional Gradient Fibrous Membranes Aiming at High Performance for Both Lithium–Sulfur and Zinc–Air Batteries". Electronics 12, nr 4 (9.02.2023): 885. http://dx.doi.org/10.3390/electronics12040885.
Pełny tekst źródłaLiu, Bo, Shaozhuan Huang, Dezhi Kong, Junping Hu i Hui Ying Yang. "Bifunctional NiCo2S4 catalysts supported on a carbon textile interlayer for ultra-stable Li–S battery". Journal of Materials Chemistry A 7, nr 13 (2019): 7604–13. http://dx.doi.org/10.1039/c9ta00701f.
Pełny tekst źródłaLiang, Xin, Jufeng Yun, Yong Wang, Hongfa Xiang, Yi Sun, Yuezhan Feng i Yan Yu. "A new high-capacity and safe energy storage system: lithium-ion sulfur batteries". Nanoscale 11, nr 41 (2019): 19140–57. http://dx.doi.org/10.1039/c9nr05670j.
Pełny tekst źródłaWang, Xin, Guo-Dong Han i Juan Wang. "Polypyrrole Coated Al-TDC Composite Structure as Lithium-Sulfur Batteries Cathode". Nano 16, nr 06 (20.05.2021): 2150060. http://dx.doi.org/10.1142/s1793292021500600.
Pełny tekst źródłaMa, Ting, Alexandra D. Easley, Ratul Mitra Thakur, Khirabdhi T. Mohanty, Chen Wang i Jodie L. Lutkenhaus. "Nonconjugated Redox-Active Polymers: Electron Transfer Mechanisms, Energy Storage, and Chemical Versatility". Annual Review of Chemical and Biomolecular Engineering 14, nr 1 (8.06.2023): 187–216. http://dx.doi.org/10.1146/annurev-chembioeng-092220-111121.
Pełny tekst źródła