Gotowa bibliografia na temat „Energy Storage Materials Metal-Sulfur Batteries”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Energy Storage Materials Metal-Sulfur Batteries”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Energy Storage Materials Metal-Sulfur Batteries"
Xie, Xing-Chen, Ke-Jing Huang i Xu Wu. "Metal–organic framework derived hollow materials for electrochemical energy storage". Journal of Materials Chemistry A 6, nr 16 (2018): 6754–71. http://dx.doi.org/10.1039/c8ta00612a.
Pełny tekst źródłaChen, Liping, Xifei Li i Yunhua Xu. "Recent advances of polar transition-metal sulfides host materials for advanced lithium–sulfur batteries". Functional Materials Letters 11, nr 06 (grudzień 2018): 1840010. http://dx.doi.org/10.1142/s1793604718400106.
Pełny tekst źródłaZhu, Mengqi, Songmei Li, Bin Li i Shubin Yang. "A liquid metal-based self-adaptive sulfur–gallium composite for long-cycling lithium–sulfur batteries". Nanoscale 11, nr 2 (2019): 412–17. http://dx.doi.org/10.1039/c8nr08625g.
Pełny tekst źródłaWang, Jie, Ping Nie, Bing Ding, Shengyang Dong, Xiaodong Hao, Hui Dou i Xiaogang Zhang. "Biomass derived carbon for energy storage devices". Journal of Materials Chemistry A 5, nr 6 (2017): 2411–28. http://dx.doi.org/10.1039/c6ta08742f.
Pełny tekst źródłaHuang, Zongle, Wenting Sun, Zhipeng Sun, Run Ding i Xuebin Wang. "Graphene-Based Materials for the Separator Functionalization of Lithium-Ion/Metal/Sulfur Batteries". Materials 16, nr 12 (18.06.2023): 4449. http://dx.doi.org/10.3390/ma16124449.
Pełny tekst źródłaWang, Yanjie, Yingjie Zhang, Hongyu Cheng, Zhicong Ni, Ying Wang, Guanghui Xia, Xue Li i Xiaoyuan Zeng. "Research Progress toward Room Temperature Sodium Sulfur Batteries: A Review". Molecules 26, nr 6 (11.03.2021): 1535. http://dx.doi.org/10.3390/molecules26061535.
Pełny tekst źródłaIkram, Rabia, Badrul Mohamed Jan, Syed Atif Pervez, Vassilis M. Papadakis, Waqas Ahmad, Rani Bushra, George Kenanakis i Masud Rana. "Recent Advancements of N-Doped Graphene for Rechargeable Batteries: A Review". Crystals 10, nr 12 (26.11.2020): 1080. http://dx.doi.org/10.3390/cryst10121080.
Pełny tekst źródłaSong, Zihui, Wanyuan Jiang, Xigao Jian i Fangyuan Hu. "Advanced Nanostructured Materials for Electrocatalysis in Lithium–Sulfur Batteries". Nanomaterials 12, nr 23 (6.12.2022): 4341. http://dx.doi.org/10.3390/nano12234341.
Pełny tekst źródłaWang, Ying, Rui Ai, Fei Wang, Xiuqiong Hu, Yuejing Zeng, Jiyue Hou, Jinbao Zhao, Yingjie Zhang, Yiyong Zhang i Xue Li. "Research Progress on Multifunctional Modified Separator for Lithium–Sulfur Batteries". Polymers 15, nr 4 (16.02.2023): 993. http://dx.doi.org/10.3390/polym15040993.
Pełny tekst źródłaChung, Sheng-Heng, i Cun-Sheng Cheng. "(Digital Presentation) A Design of Nickel/Sulfur Energy-Storage Materials for Electrochemical Lithium-Sulfur Cells". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 542. http://dx.doi.org/10.1149/ma2022-024542mtgabs.
Pełny tekst źródłaRozprawy doktorskie na temat "Energy Storage Materials Metal-Sulfur Batteries"
Dirlam, Philip Thomas, i Philip Thomas Dirlam. "Preparation of Electroactive Materials for High Performance Lithium-Sulfur Batteries". Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/621564.
Pełny tekst źródłaZhang, Lu. "Study of Novel Graphene Structures for Energy Storage Applications". University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1479823012280305.
Pełny tekst źródłaCampbell, Christopher. "The Effect of Pressure on Cathode Performance in the Lithium Sulfur Battery". Thesis, The University of Arizona, 2013. http://hdl.handle.net/10150/312669.
Pełny tekst źródłaDall'Agnese, Yohan. "Study of early transition metal carbides for energy storage applications". Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30025/document.
Pełny tekst źródłaAn increase in energy and power densities is needed to match the growing energy storage demands linked with the development of renewable energy production and portable electronics. Several energy storage technologies exist including lithium ion batteries, sodium ion batteries, fuel cells and electrochemical capacitors. These systems are complementary to each other. For example, electrochemical capacitors (ECs) can deliver high power densities whereas batteries are used for high energy densities applications. The first objective of this work is to investigate the electrochemical performances of a new family of 2-D material called MXene and propose new solutions to tackle the energy storage concern. To achieve this goal, several directions have been explored. The first part of the research focuses on MXene behavior as electrode material for electrochemical capacitors in aqueous electrolytes. The next part starts with sodium-ion batteries, and a new hybrid system of sodium ion capacitor is proposed. The last part is the study of MXene electrodes for supercapacitors is organic electrolytes. The energy storage mechanisms are thoroughly investigated. Different characterization techniques were used in this work, such as cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy, scanning electron microscopy and X-ray diffraction
Ragupathy, P. "Studies On Nanostructured Transition Metal Oxides For Lithium-ion Batteries And Supercapacitoris". Thesis, 2009. http://hdl.handle.net/2005/1024.
Pełny tekst źródłaUsman, Zubair. "High-energy sustainable Lithium Sulfur batteries for electrical vehicles and renewable energy applications - Development of innovative electrodes". Doctoral thesis, 2019. http://hdl.handle.net/11583/2730561.
Pełny tekst źródłaKsiążki na temat "Energy Storage Materials Metal-Sulfur Batteries"
Innovative Antriebe 2016. VDI Verlag, 2016. http://dx.doi.org/10.51202/9783181022894.
Pełny tekst źródłaZhang, Jiujun, i Vladimir Neburchilov. Metal-Air and Metal-Sulfur Batteries: Fundamentals and Applications. Taylor & Francis Group, 2019.
Znajdź pełny tekst źródłaZhang, Jiujun, i Vladimir Neburchilov. Metal-Air and Metal-Sulfur Batteries: Fundamentals and Applications. Taylor & Francis Group, 2016.
Znajdź pełny tekst źródłaZhang, Jiujun, i Vladimir Neburchilov. Metal-Air and Metal-Sulfur Batteries: Fundamentals and Applications. Taylor & Francis Group, 2016.
Znajdź pełny tekst źródłaZhang, Jiujun, i Vladimir Neburchilov. Metal-Air and Metal-Sulfur Batteries: Fundamentals and Applications. Taylor & Francis Group, 2016.
Znajdź pełny tekst źródłaCzęści książek na temat "Energy Storage Materials Metal-Sulfur Batteries"
Zhu, Jiadeng, Yucheng Zhou, Qiang Gao i Mengjin Jiang. "Polymeric Materials for Metal-Sulfur Batteries". W Recent Advancements in Polymeric Materials for Electrochemical Energy Storage, 329–45. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4193-3_19.
Pełny tekst źródłaWang, Zhenhua. "Cathode Materials for Lithium-Sulfur Batteries". W Advanced Electrochemical Materials in Energy Conversion and Storage, 129–44. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003133971-5.
Pełny tekst źródłaWang, Zhenhua. "Anode Materials for Lithium-Sulfur Batteries". W Advanced Electrochemical Materials in Energy Conversion and Storage, 145–63. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003133971-6.
Pełny tekst źródłaWang, Zhenhua. "Interlayer of Lithium-Sulfur Batteries". W Advanced Electrochemical Materials in Energy Conversion and Storage, 165–71. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003133971-7.
Pełny tekst źródłaLiu, Bin, i Huilin Pan. "Rechargeable Lithium Metal Batteries". W Nanostructured Materials for Next-Generation Energy Storage and Conversion, 147–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-58675-4_4.
Pełny tekst źródłaWei, Yi, Huiyang Ma, Wei Guo i Yongzhu Fu. "Principles and Status of Lithium-Sulfur Batteries". W Advanced Electrochemical Materials in Energy Conversion and Storage, 173–206. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003133971-8.
Pełny tekst źródłaSharma, Mansi, Pragati Chauhan, Dinesh Kumar i Rekha Sharma. "Polymeric Materials for Metal-Air Batteries". W Recent Advancements in Polymeric Materials for Electrochemical Energy Storage, 383–99. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4193-3_22.
Pełny tekst źródłaDehghan-Manshadi, Hamid, Mohammad Mazloum-Ardakani i Soraya Ghayempour. "Polymer-Metal Oxides Nanocomposites for Metal-Ion Batteries". W Recent Advancements in Polymeric Materials for Electrochemical Energy Storage, 299–312. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4193-3_17.
Pełny tekst źródłaWang, Tianyi, Yushu Liu, Dawei Su i Guoxiu Wang. "1D and 2D Flexible Carbon Matrix Materials for Lithium-Sulfur Batteries". W Flexible Energy Conversion and Storage Devices, 127–53. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527342631.ch5.
Pełny tekst źródłaGautam, Sakshi, Anjali Banger, Nirmala Kumari Jangid i Manish Srivastava. "Polymer-Chalcogen Composites for Metal-Ion Batteries". W Recent Advancements in Polymeric Materials for Electrochemical Energy Storage, 313–28. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4193-3_18.
Pełny tekst źródłaStreszczenia konferencji na temat "Energy Storage Materials Metal-Sulfur Batteries"
Pharr, Matt. "Mechanical behavior of metal anodes for next-generation rechargeable batteries". W Energy Harvesting and Storage: Materials, Devices, and Applications XI, redaktorzy Achyut K. Dutta, Palani Balaya i Sheng Xu. SPIE, 2021. http://dx.doi.org/10.1117/12.2588771.
Pełny tekst źródłaParra-Puerto, Andres, Jack Dawson, Mengjun Gong, Javier Rubio-Garcia i Anthony Kucernak. "Carbon Materials for Energy Storage from Redox Flow Batteries to Lithium Sulfur Batteries, Catalyst for Alkaline Electrolysers and Hybrid Redox Flow Batteries". W Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.171.
Pełny tekst źródłaKumar, Bachu S., Anagha Pradeep i Amartya Mukhopadhyay. "Tuning the transition metal oxides towards achieving water-stability and high voltage electrochemical stability, as cathode materials for alkali metal-ion batteries". W Energy Harvesting and Storage: Materials, Devices, and Applications XI, redaktorzy Achyut K. Dutta, Palani Balaya i Sheng Xu. SPIE, 2021. http://dx.doi.org/10.1117/12.2589639.
Pełny tekst źródłaTariq, Hanan Abdurehman, Abdul Shakoor, Jeffin James, Umair Nisar i Ramzan Kahraman. "Combustion-Free Synthesis of Lithium Manganese Oxide Composites with CNTs/GNPs by Chemical Coprecipitation for Energy Storage Devices". W Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0004.
Pełny tekst źródłaWang, C. Y., W. B. Gu, R. Cullion i B. Thomas. "Heat and Mass Transfer in Advanced Batteries". W ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-1000.
Pełny tekst źródłaKareem, M. O., H. K. Amusa i E. M. Nashef. "Evaluation of the Ionic Liquid, 1-Butyl-1-Methylpyrrolidinium Bis(Trifluoromethylsulfonyl)imide, as a Sustainable Material for Modern Energy Devices". W SPE Nigeria Annual International Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/217220-ms.
Pełny tekst źródłaAlbina, Dionel O., Karsten Millrath i N. J. Themelis. "Effects of Feed Composition on Boiler Corrosion in Waste-to-Energy Plants". W 12th Annual North American Waste-to-Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nawtec12-2215.
Pełny tekst źródłaPatel, Prehit, i George J. Nelson. "The Influence of Structure on the Electrochemical and Thermal Response of Li-Ion Battery Electrodes". W ASME 2019 13th International Conference on Energy Sustainability collocated with the ASME 2019 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/es2019-3926.
Pełny tekst źródła