Gotowa bibliografia na temat „ENERGY STORAGE APPLICATIONS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „ENERGY STORAGE APPLICATIONS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "ENERGY STORAGE APPLICATIONS"
Niu, Jianna, George You Zhou i Tong Wu. "Embedded Battery Energy Storage System for Diesel Engine Test Applications". International Journal of Materials, Mechanics and Manufacturing 3, nr 4 (2015): 294–98. http://dx.doi.org/10.7763/ijmmm.2015.v3.213.
Pełny tekst źródłaAzrul, Mohd. "Applications of Energy Storage Systems in Wind Based Power System". International Journal of Trend in Scientific Research and Development Volume-2, Issue-6 (31.10.2018): 284–91. http://dx.doi.org/10.31142/ijtsrd18468.
Pełny tekst źródłaSchoenung, S. M., i C. Burns. "Utility energy storage applications studies". IEEE Transactions on Energy Conversion 11, nr 3 (1996): 658–65. http://dx.doi.org/10.1109/60.537039.
Pełny tekst źródłaKousksou, T., P. Bruel, A. Jamil, T. El Rhafiki i Y. Zeraouli. "Energy storage: Applications and challenges". Solar Energy Materials and Solar Cells 120 (styczeń 2014): 59–80. http://dx.doi.org/10.1016/j.solmat.2013.08.015.
Pełny tekst źródłaAbbey, Chad, i Gza Joos. "Supercapacitor Energy Storage for Wind Energy Applications". IEEE Transactions on Industry Applications 43, nr 3 (2007): 769–76. http://dx.doi.org/10.1109/tia.2007.895768.
Pełny tekst źródłaUSACHEVA, IRINA V., ELENA A. GLADKAYA i SERGEY V. LANDIN. "HYBRID ENERGY STORAGE: PROBLEMS AND PROSPECTS OF ENERGY STORAGE TECHNOLOGIES". Scientific Works of the Free Economic Society of Russia 236, nr 4 (2022): 149–67. http://dx.doi.org/10.38197/2072-2060-2022-236-4-149-167.
Pełny tekst źródłaÇakır, Abdülkadir, i Ertuğrul Furkan Kurmuş. "Energy storage technologies for building applications". Heritage and Sustainable Development 1, nr 1 (23.12.2019): 41–47. http://dx.doi.org/10.37868/hsd.v1i1.10.
Pełny tekst źródłaDu, Yining, Mingyang Wang, Xiaoling Ye, Benqing Liu, Lei Han, Syed Hassan Mujtaba Jafri, Wencheng Liu, Xiaoxiao Zheng, Yafei Ning i Hu Li. "Advances in the Field of Graphene-Based Composites for Energy–Storage Applications". Crystals 13, nr 6 (4.06.2023): 912. http://dx.doi.org/10.3390/cryst13060912.
Pełny tekst źródłaBocklisch, Thilo. "Hybrid energy storage approach for renewable energy applications". Journal of Energy Storage 8 (listopad 2016): 311–19. http://dx.doi.org/10.1016/j.est.2016.01.004.
Pełny tekst źródłaBocklisch, Thilo. "Hybrid Energy Storage Systems for Renewable Energy Applications". Energy Procedia 73 (czerwiec 2015): 103–11. http://dx.doi.org/10.1016/j.egypro.2015.07.582.
Pełny tekst źródłaRozprawy doktorskie na temat "ENERGY STORAGE APPLICATIONS"
Rowlands, Stephen E. "Electrochemical supercapacitors for energy storage applications". Thesis, De Montfort University, 2002. http://hdl.handle.net/2086/4077.
Pełny tekst źródłaDu, Yanping. "Cold energy storage : fundamentals and applications". Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/8622/.
Pełny tekst źródłaYang, Hao. "Graphene-based Supercapacitors for Energy Storage Applications". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1376918924.
Pełny tekst źródłaEdwards, Jacob N. "Thermal energy storage for nuclear power applications". Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/36238.
Pełny tekst źródłaDepartment of Mechanical and Nuclear Engineering
Hitesh Bindra
Storing excess thermal energy in a storage media that can later be extracted during peak-load times is one of the better economical options for nuclear power in future. Thermal energy storage integration with light water-cooled and advanced nuclear power plants is analyzed to assess technical feasibility of different storage media options. Various choices are considered in this study; molten salts, synthetic heat transfer fluids, and packed beds of solid rocks or ceramics. In-depth quantitative assessment of these integration possibilities are then analyzed using exergy analysis and energy density models. The exergy efficiency of thermal energy storage systems is quantified based on second law thermodynamics. The packed bed of solid rocks is identified as one of the only options which can be integrated with upcoming small modular reactors. Directly storing thermal energy from saturated steam into packed bed of rocks is a very complex physical process due to phase transformation, two phase flow in irregular geometries and percolating irregular condensate flow. In order to examine the integrated physical aspects of this process, the energy transport during direct steam injection and condensation in the dry cold randomly packed bed of spherical alumina particles was experimentally and theoretically studied. This experimental setup ensures controlled condensation process without introducing significant changes in the thermal state or material characteristics of heat sink. Steam fronts at different flow rates were introduced in a cylindrical packed bed and thermal response of the media was observed. The governing heat transfer modes in the media are completely dependent upon the rate of steam injection into the system. A distinct differentiation between the effects of heat conduction and advection in the bed were observed with slower steam injection rates. A phenomenological semi-analytical model is developed for predicting quantitative thermal behavior of the packed bed and understanding physics. The semi-analytical model results are compared with the experimental data for the validation purposes. The steam condensation process in packed beds is very stable under all circumstances and there is no effect of flow fluctuations on thermal stratification in packed beds. With these experimental and analytical studies, it can be concluded that packed beds have potential for thermal storage applications with steam as heat transfer fluid. The stable stratification and condensation process in packed beds led to design of a novel passive safety heat removal system for advanced boiling water reactors.
Nagar, Bhawna. "Printed Graphene for energy storage and sensing applications". Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667240.
Pełny tekst źródłaThe focus of this thesis has been the design and preparation of flexible graphene-based electrodesand their printing using different techniques for applications in energy storage, specifically supercapacitors and electrochemical sensing devices. Different strategies have been employed keeping in mind the end application and accordingly graphene or its hybrids wereprepared using different synthetic routes along with careful selection of the available printing techniques as well as the substrates. For energy storage part(Chapter 2), Supercapacitor devices with high capacitances, energy and power density have been demonstrated over Cloth (Carbon), Paper (Common A4 paper) and Plastic substrates using different printing techniques, graphene hybrids as well as hybrid electrolytes. In the case of Sensing applications(Chapter 3),two sensors have been demonstrated over plastic substrates. A high sensitivity DNA (Bio)sensor for viruses using one step facile printing is shown, which structure and operation principle can be extended to other bio-analytes with interest for applications in various areas. In another study, extremely high concentration yet stable graphene inkjet printable ink has been prepared and its use as a bacterial sensor has been demonstrated as a proof of concept. The graphene ink prepared could produce highly conducting patterns that in principle can offer other bio or chemical sensing with high sensitivities. Studies of different printing techniques were carried out and suitable inks were formulated and tested for each technique with optimization of the printing parameters in order to obtain reproducible films and hence reproducible device fabrication has been the focus. The main printing/coating techniques used in this Thesis are Doctor blade coating, Inkjet printing, screen printing and wax stamping technique. The project therefore involved a very important part of synthesis and characterization of graphene and derivatives, formulation of inks and finally device integration and testing
Mangu, Raghu. "NANOSTRUCTURED ARRAYS FOR SENSING AND ENERGY STORAGE APPLICATIONS". UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_diss/207.
Pełny tekst źródłaParra, Mendoza David. "Optimum community energy storage for end user applications". Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/27708/.
Pełny tekst źródłaRoberts, Aled Deakin. "Ice-templated porous carbons for energy storage applications". Thesis, University of Liverpool, 2016. http://livrepository.liverpool.ac.uk/3006170/.
Pełny tekst źródłaMistry, Priyen C. "Coated metal hydrides for stationary energy storage applications". Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/38798/.
Pełny tekst źródłaEk, Ludvig, i Tim Ottosson. "Optimization of energy storage use for solar applications". Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149305.
Pełny tekst źródłaKsiążki na temat "ENERGY STORAGE APPLICATIONS"
Nalwa, Hari Singh. Nanomaterials for energy storage applications. Stevenson Ranch, Calif: American Scientific Publishers, 2009.
Znajdź pełny tekst źródłaE, Pérez-Davis Marla, i NASA Glenn Research Center, red. Energy storage for aerospace applications. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Znajdź pełny tekst źródłaRosen, Marc (Marc A.), red. Thermal energy storage: Systems and applications. Wyd. 2. Hoboken, N.J: Wiley, 2010.
Znajdź pełny tekst źródłaDinter, Frank, Michael A. Geyer i Rainer Tamme, red. Thermal Energy Storage for Commercial Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-48685-2.
Pełny tekst źródłaBalakrishnan, Neethu T. M., i Raghavan Prasanth, red. Electrospinning for Advanced Energy Storage Applications. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8844-0.
Pełny tekst źródłaRowlands, S. E. Electrochemical supercapacitors for energy storage applications. Leicester: De Montfort University, 2002.
Znajdź pełny tekst źródłaSaxena, Amit, Bhaskar Bhattacharya i Felipe Caballero-Briones. Applications of Nanomaterials for Energy Storage Devices. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003216308.
Pełny tekst źródłaOlivier, David. Energy storage systems: Past, present and future applications. Barnet: Maclean Hunter Business Studies, 1989.
Znajdź pełny tekst źródłaIkram, Muhammad, Ali Raza i Salamat Ali. 2D-Materials for Energy Harvesting and Storage Applications. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96021-6.
Pełny tekst źródłaStand-alone and hybrid wind energy systems: Technology, energy storage and applications. Boca Raton: CRC Press, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "ENERGY STORAGE APPLICATIONS"
Delamare, Jérôme, i Orphée Cugat. "Mobile Applications and Micro-Power Sources". W Energy Storage, 83–114. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557808.ch4.
Pełny tekst źródłaFleischer, Amy S. "Energy Storage Applications". W Thermal Energy Storage Using Phase Change Materials, 7–35. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20922-7_2.
Pełny tekst źródłaWang, Zhaohui, i Leif Nyholm. "Energy Storage Applications". W Emerging Nanotechnologies in Nanocellulose, 237–65. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14043-3_8.
Pełny tekst źródłaZaccagnini, Pietro, i Andrea Lamberti. "Energy Storage Applications". W High Resolution Manufacturing from 2D to 3D/4D Printing, 233–67. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13779-2_9.
Pełny tekst źródłaDinçer, İbrahim, i Calin Zamfirescu. "Energy Storage". W Sustainable Energy Systems and Applications, 431–78. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-95861-3_11.
Pełny tekst źródłaBarrade, Philippe. "Supercapacitors: Principles, Sizing, Power Interfaces and Applications". W Energy Storage, 217–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557808.ch9.
Pełny tekst źródłaHuggins, Robert A. "Energy Storage for Medium- to Large-Scale Applications". W Energy Storage, 427–71. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21239-5_22.
Pełny tekst źródłaHuggins, Robert A. "Energy Storage for Medium-to-Large Scale Applications". W Energy Storage, 367–82. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1024-0_21.
Pełny tekst źródłaTripathi, Manoj, Akanksha Verma i Ashish Bhatnagar. "Energy Storage Application". W Nanotechnology for Electronic Applications, 49–62. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6022-1_3.
Pełny tekst źródłaAli, Hafiz Muhammad, Furqan Jamil i Hamza Babar. "Energy Storage Materials in Thermal Storage Applications". W Thermal Energy Storage, 79–117. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1131-5_5.
Pełny tekst źródłaStreszczenia konferencji na temat "ENERGY STORAGE APPLICATIONS"
Oudalov, Alexandre, Tilo Buehler i Daniel Chartouni. "Utility Scale Applications of Energy Storage". W 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4780999.
Pełny tekst źródłaDivakar, B. P., K. W. E. Cheng i D. Sutanto. "Understanding the conducting states of active and passive switches in an inverter circuit used for power system applications". W Energy Storage. IEEE, 2011. http://dx.doi.org/10.1109/pesa.2011.5982967.
Pełny tekst źródłaVidhya, M. Sangeetha, G. Ravi, R. Yuvakkumar, P. Kumar, Dhayalan Velauthapillai, B. Saravanakumar i E. Sunil Babu. "Cu2S electrochemical energy storage applications". W PROCEEDINGS OF ADVANCED MATERIAL, ENGINEERING & TECHNOLOGY. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0019377.
Pełny tekst źródła"Energy storage systems in renewable energy applications". W 2016 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2016. http://dx.doi.org/10.1109/icit.2016.7475056.
Pełny tekst źródłaJohnson, Anthony, Martin Dooley, Andrew G. Gibson i S. M. Barrans. "Practical energy storage utilising Kinetic Energy Storage Batteries (KESB)". W 2012 2nd International Symposium on Environment-Friendly Energies and Applications (EFEA). IEEE, 2012. http://dx.doi.org/10.1109/efea.2012.6294076.
Pełny tekst źródłaMeddeb, Amira B., i Zoubeida Ounaies. "Polymer Nanocomposites for Energy Storage Applications". W ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3884.
Pełny tekst źródłaRao, V. Vasudeva, Shyamalendu M. Bose, S. N. Behera i B. K. Roul. "Superconducting Magnetic Energy Storage and Applications". W MESOSCOPIC, NANOSCOPIC AND MACROSCOPIC MATERIALS: Proceedings of the International Workshop on Mesoscopic, Nanoscopic and Macroscopic Materials (IWMNMM-2008). AIP, 2008. http://dx.doi.org/10.1063/1.3027184.
Pełny tekst źródłaTarrant, C. "Kinetic energy storage for railway applications". W IEE Recent Developments in Railway Electrification Seminar. IEE, 2004. http://dx.doi.org/10.1049/ic:20040044.
Pełny tekst źródłaBahramirad, S., i W. Reder. "Islanding applications of energy storage system". W 2012 IEEE Power & Energy Society General Meeting. New Energy Horizons - Opportunities and Challenges. IEEE, 2012. http://dx.doi.org/10.1109/pesgm.2012.6345706.
Pełny tekst źródłaTudor, Cody, Eric Sprung, Justin Meyer i Russ Tatro. "Low power-energy storage system for energy harvesting applications". W 2013 IEEE 14th International Conference on Information Reuse & Integration (IRI). IEEE, 2013. http://dx.doi.org/10.1109/iri.2013.6642530.
Pełny tekst źródłaRaporty organizacyjne na temat "ENERGY STORAGE APPLICATIONS"
Denholm, P., J. Jorgenson, M. Hummon, T. Jenkin, D. Palchak, B. Kirby, O. Ma i M. O'Malley. Value of Energy Storage for Grid Applications. Office of Scientific and Technical Information (OSTI), maj 2013. http://dx.doi.org/10.2172/1079719.
Pełny tekst źródłaAkhil, A. A., P. Butler i T. C. Bickel. Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis. Office of Scientific and Technical Information (OSTI), listopad 1993. http://dx.doi.org/10.2172/10115548.
Pełny tekst źródłaSwaminathan, S., i R. K. Sen. Electric utility applications of hydrogen energy storage systems. Office of Scientific and Technical Information (OSTI), październik 1997. http://dx.doi.org/10.2172/674694.
Pełny tekst źródłaDenholm, Paul, Jennie Jorgenson, Marissa Hummon, Thomas Jenkin, David Palchak, Brendan Kirby, Ookie Ma i Mark O'Malley. The Value of Energy Storage for Grid Applications. Office of Scientific and Technical Information (OSTI), maj 2013. http://dx.doi.org/10.2172/1220050.
Pełny tekst źródłaTwitchell, Jeremy, Sarah Newman, Rebecca O'Neil i Matthew McDonnell. Planning Considerations for Energy Storage in Resilience Applications. Office of Scientific and Technical Information (OSTI), marzec 2020. http://dx.doi.org/10.2172/1765370.
Pełny tekst źródłaBanerjee, Sanjoy. The CUNY Energy Institute Electrical Energy Storage Development for Grid Applications. Office of Scientific and Technical Information (OSTI), marzec 2013. http://dx.doi.org/10.2172/1111423.
Pełny tekst źródłaSwaminathan, S., i R. K. Sen. Review of power quality applications of energy storage systems. Office of Scientific and Technical Information (OSTI), maj 1997. http://dx.doi.org/10.2172/661550.
Pełny tekst źródłaTomlinson, J. J. (Thermal energy storage technologies for heating and cooling applications). Office of Scientific and Technical Information (OSTI), grudzień 1990. http://dx.doi.org/10.2172/6285319.
Pełny tekst źródłaGonzales, Ivana. Computational material design for energy and gas storage applications. Office of Scientific and Technical Information (OSTI), luty 2013. http://dx.doi.org/10.2172/1063254.
Pełny tekst źródłaBabinec, Susan. Lithium Ion Cell Development for Photovoltaic Energy Storage Applications. Office of Scientific and Technical Information (OSTI), luty 2012. http://dx.doi.org/10.2172/1064418.
Pełny tekst źródła