Artykuły w czasopismach na temat „Energy functional”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Energy functional.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Energy functional”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Mi, Wenhui, Alessandro Genova i Michele Pavanello. "Nonlocal kinetic energy functionals by functional integration". Journal of Chemical Physics 148, nr 18 (14.05.2018): 184107. http://dx.doi.org/10.1063/1.5023926.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Read, James. "Functional Gravitational Energy". British Journal for the Philosophy of Science 71, nr 1 (1.03.2020): 205–32. http://dx.doi.org/10.1093/bjps/axx048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Yan, Xiaoqing, Xinting Huang i Shengyu Wu. "Energy Revolution Path Based on Main Functional Region Planning". Journal of Clean Energy Technologies 5, nr 3 (maj 2017): 263–67. http://dx.doi.org/10.18178/jocet.2017.5.3.380.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hyun, Jin-Woo, i Dong-Un Yeom. "Equipment Importance Classification of Nuclear Power Plants Using Functional Based System". Journal of Energy Engineering 20, nr 3 (30.09.2011): 200–208. http://dx.doi.org/10.5855/energy.2011.20.3.200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Andriotis, Antonis N. "LDA exchange-energy functional". Physical Review B 58, nr 23 (15.12.1998): 15300–15303. http://dx.doi.org/10.1103/physrevb.58.15300.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Saura-Muzquiz, Matilde, i Mogens Christensen. "Functional and Energy Materials". Neutron News 27, nr 1 (2.01.2016): 7. http://dx.doi.org/10.1080/10448632.2016.1125261.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Koures, Antonios G., i Frank E. Harris. "Improved correlation energy functional". International Journal of Quantum Chemistry 59, nr 1 (1996): 3–6. http://dx.doi.org/10.1002/(sici)1097-461x(1996)59:1<3::aid-qua1>3.0.co;2-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Sim, Eunji, Joe Larkin, Kieron Burke i Charles W. Bock. "Testing the kinetic energy functional: Kinetic energy density as a density functional". Journal of Chemical Physics 118, nr 18 (8.05.2003): 8140–48. http://dx.doi.org/10.1063/1.1565316.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Gambin, B., i W. Bielski. "Incompressible limit for a magnetostrictive energy functional". Bulletin of the Polish Academy of Sciences: Technical Sciences 61, nr 4 (1.12.2013): 1025–30. http://dx.doi.org/10.2478/bpasts-2013-0110.

Pełny tekst źródła
Streszczenie:
Abstract The modern materials undergoing large elastic deformations and exhibiting strong magnetostrictive effect are modelled here by free energy functionals for nonlinear and non-local magnetoelastic behaviour. The aim of this work is to prove a new theorem which claims that a sequence of free energy functionals of slightly compressible magnetostrictive materials with a non-local elastic behaviour, converges to an energy functional of a nearly incompressible magnetostrictive material. This convergence is referred to as a Γ -convergence. The non-locality is limited to non-local elastic behaviour which is modelled by a term containing the second gradient of deformation in the energy functional.
Style APA, Harvard, Vancouver, ISO itp.
10

Ludeña, E. V., R. López-Boada i R. Pino. "Approximate kinetic energy density functionals generated by local-scaling transformations". Canadian Journal of Chemistry 74, nr 6 (1.06.1996): 1097–105. http://dx.doi.org/10.1139/v96-123.

Pełny tekst źródła
Streszczenie:
Different stages in the development of density functional theory are succinctly reviewed for the purpose of tracing the origin of the local-scaling transformation version of density functional theory. Explicit kinetic energy functionals are generated within this theory. These functionals are analyzed in terms of several approximations to the local-scaling function and are applied to a few selected first-row atoms. Key words: density functional theory, kinetic energy density functionals, local-scaling transformations, explicit kinetic energy functionals, kinetic energy of first-row atoms.
Style APA, Harvard, Vancouver, ISO itp.
11

Ramachandran, B. "Scaling Dynamical Correlation Energy from Density Functional Theory Correlation Functionals†". Journal of Physical Chemistry A 110, nr 2 (styczeń 2006): 396–403. http://dx.doi.org/10.1021/jp050584x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Weiner, B., i S. B. Trickey. "State energy functionals and variational equations in density functional theory". Journal of Molecular Structure: THEOCHEM 501-502 (kwiecień 2000): 65–83. http://dx.doi.org/10.1016/s0166-1280(99)00415-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Baumann, G., i R. Duscher. "The Functional Equations for the Kinetic and Exchange Energy Functionals". physica status solidi (b) 158, nr 2 (1.04.1990): 573–87. http://dx.doi.org/10.1002/pssb.2221580219.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Prasankumar, Thibeorchews, Sujin Jose, Pulickel M. Ajayan i Meiyazhagan Ashokkumar. "Functional carbons for energy applications". Materials Research Bulletin 142 (październik 2021): 111425. http://dx.doi.org/10.1016/j.materresbull.2021.111425.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Devan, Rupesh S., Yuan-Ron Ma, Jin-Hyeok Kim, Raghu N. Bhattacharya i Kartik C. Ghosh. "Functional Nanomaterials for Energy Applications". Journal of Nanomaterials 2015 (2015): 1–2. http://dx.doi.org/10.1155/2015/131965.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Furnstahl, R. J., i James C. Hackworth. "Skyrme energy functional and naturalness". Physical Review C 56, nr 5 (1.11.1997): 2875–78. http://dx.doi.org/10.1103/physrevc.56.2875.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Mattsson, Ann E., i Walter Kohn. "An energy functional for surfaces". Journal of Chemical Physics 115, nr 8 (22.08.2001): 3441–43. http://dx.doi.org/10.1063/1.1396649.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Chung, T. C. Mike. "Functional Polyolefins for Energy Applications". Macromolecules 46, nr 17 (13.08.2013): 6671–98. http://dx.doi.org/10.1021/ma401244t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Harriman, John E. "A kinetic energy density functional". Journal of Chemical Physics 83, nr 12 (15.12.1985): 6283–87. http://dx.doi.org/10.1063/1.449578.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Campbell, Loudon, i F. A. Matsen. "The Ising free-energy functional". International Journal of Quantum Chemistry 59, nr 5 (1996): 391–400. http://dx.doi.org/10.1002/(sici)1097-461x(1996)59:5<391::aid-qua3>3.0.co;2-t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Xu, Terry T., i Jung-Kun Lee. "Functional Nanomaterials: Energy and Sensing". JOM 68, nr 4 (16.02.2016): 1143–44. http://dx.doi.org/10.1007/s11837-016-1839-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Medvedev, Michael G., Ivan S. Bushmarinov, Jianwei Sun, John P. Perdew i Konstantin A. Lyssenko. "Density functional theory is straying from the path toward the exact functional". Science 355, nr 6320 (5.01.2017): 49–52. http://dx.doi.org/10.1126/science.aah5975.

Pełny tekst źródła
Streszczenie:
The theorems at the core of density functional theory (DFT) state that the energy of a many-electron system in its ground state is fully defined by its electron density distribution. This connection is made via the exact functional for the energy, which minimizes at the exact density. For years, DFT development focused on energies, implicitly assuming that functionals producing better energies become better approximations of the exact functional. We examined the other side of the coin: the energy-minimizing electron densities for atomic species, as produced by 128 historical and modern DFT functionals. We found that these densities became closer to the exact ones, reflecting theoretical advances, until the early 2000s, when this trend was reversed by unconstrained functionals sacrificing physical rigor for the flexibility of empirical fitting.
Style APA, Harvard, Vancouver, ISO itp.
23

GÁL, TAMÁS. "TREATMENTS OF THE EXCHANGE ENERGY IN DENSITY-FUNCTIONAL THEORY". International Journal of Modern Physics B 22, nr 14 (10.06.2008): 2225–39. http://dx.doi.org/10.1142/s0217979208039344.

Pełny tekst źródła
Streszczenie:
Following a recent work [Gál, Phys. Rev. A64, 062503 (2001)], a simple derivation of the density-functional correction of the Hartree–Fock equations, the Hartree–Fock–Kohn–Sham equations, is presented, completing an integrated view of quantum mechanical theories, in which the Kohn–Sham equations, the Hartree–Fock–Kohn–Sham equations and the ground-state Schrödinger equation formally stem from a common ground: density-functional theory, through its Euler equation for the ground-state density. Along similar lines, the Kohn–Sham formulation of the Hartree–Fock approach is also considered. Further, it is pointed out that the exchange energy of density-functional theory built from the Kohn–Sham orbitals can be given by degree-two homogeneous N-particle density functionals (N = 1, 2, …), forming a sequence of degree-two homogeneous exchange-energy density functionals, the first element of which is minus the classical Coulomb-repulsion energy functional.
Style APA, Harvard, Vancouver, ISO itp.
24

Sharma, Prachi, Jie J. Bao, Donald G. Truhlar i Laura Gagliardi. "Multiconfiguration Pair-Density Functional Theory". Annual Review of Physical Chemistry 72, nr 1 (20.04.2021): 541–64. http://dx.doi.org/10.1146/annurev-physchem-090419-043839.

Pełny tekst źródła
Streszczenie:
Kohn-Sham density functional theory with the available exchange–correlation functionals is less accurate for strongly correlated systems, which require a multiconfigurational description as a zero-order function, than for weakly correlated systems, and available functionals of the spin densities do not accurately predict energies for many strongly correlated systems when one uses multiconfigurational wave functions with spin symmetry. Furthermore, adding a correlation functional to a multiconfigurational reference energy can lead to double counting of electron correlation. Multiconfiguration pair-density functional theory (MC-PDFT) overcomes both obstacles, the second by calculating the quantum mechanical part of the electronic energy entirely by a functional, and the first by using a functional of the total density and the on-top pair density rather than the spin densities. This allows one to calculate the energy of strongly correlated systems efficiently with a pair-density functional and a suitable multiconfigurational reference function. This article reviews MC-PDFT and related background information.
Style APA, Harvard, Vancouver, ISO itp.
25

DOBSON, J. F. "ELECTRON DENSITY FUNCTIONAL THEORY". International Journal of Modern Physics B 13, nr 05n06 (10.03.1999): 511–23. http://dx.doi.org/10.1142/s0217979299000412.

Pełny tekst źródła
Streszczenie:
A brief summary is given of electronic density functional theory, including recent developments: generalized gradient methods, hybrid functionals, time dependent density functionals and excited states, van der Waals energy functionals.
Style APA, Harvard, Vancouver, ISO itp.
26

Yang, Weitao, i John E. Harriman. "Analysis of the kinetic energy functional in density functional theory". Journal of Chemical Physics 84, nr 6 (15.03.1986): 3320–23. http://dx.doi.org/10.1063/1.450265.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Yin, Wan-Jian, i Xin-Gao Gong. "Hybridized kinetic energy functional for orbital-free density functional method". Physics Letters A 373, nr 4 (styczeń 2009): 480–83. http://dx.doi.org/10.1016/j.physleta.2008.11.057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Isobe, Takeshi. "Energy estimate, energy gap phenomenon, and relaxed energy for Yang-Mills functional". Journal of Geometric Analysis 8, nr 1 (styczeń 1998): 43–64. http://dx.doi.org/10.1007/bf02922108.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Gil, H., P. Papakonstantinou, C. H. Hyun, T. S. Park i Y. Oh. "Nuclear Energy Density Functional for KIDS". Acta Physica Polonica B 48, nr 3 (2017): 305. http://dx.doi.org/10.5506/aphyspolb.48.305.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Kelarakis, Antonios. "Functional Nanomaterials For Energy And Sustainability". Advanced Materials Letters 5, nr 5 (1.05.2014): 236–41. http://dx.doi.org/10.5185/amlett.2014.amwc1026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

ITOH, Yasuhiko, Masayoshi UNO, Hisao OJIMA, Shunsuke UCHIDA, Shinsuke YAMANAKA, Yukio WADA, Kensho FUJI i in. "Nuclear Energy Systems and Functional Materials". Journal of the Atomic Energy Society of Japan / Atomic Energy Society of Japan 40, nr 5 (1998): 343–62. http://dx.doi.org/10.3327/jaesj.40.343.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Bellettini, G., A. De Masi i E. Presutti. "Energy levels of a nonlocal functional". Journal of Mathematical Physics 46, nr 8 (sierpień 2005): 083302. http://dx.doi.org/10.1063/1.1990107.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Ebert, H. P. "Functional materials for energy-efficient buildings". EPJ Web of Conferences 98 (2015): 08001. http://dx.doi.org/10.1051/epjconf/20159808001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Li, LU. "Functional materials for electrochemical energy storage". Materials Technology 29, sup4 (listopad 2014): A57—A58. http://dx.doi.org/10.1179/1066785714z.000000000304.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Lesinski, T., T. Duguet, K. Bennaceur i J. Meyer. "Non-empirical pairing energy density functional". European Physical Journal A 40, nr 2 (30.04.2009): 121–26. http://dx.doi.org/10.1140/epja/i2009-10780-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Chen, Ming, Roi Baer, Daniel Neuhauser i Eran Rabani. "Energy window stochastic density functional theory". Journal of Chemical Physics 151, nr 11 (21.09.2019): 114116. http://dx.doi.org/10.1063/1.5114984.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Nesbet, R. K. "Kinetic energy in density-functional theory". Physical Review A 58, nr 1 (1.07.1998): R12—R15. http://dx.doi.org/10.1103/physreva.58.r12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Read, A. J., i R. J. Needs. "Tests of the Harris energy functional". Journal of Physics: Condensed Matter 1, nr 41 (16.10.1989): 7565–76. http://dx.doi.org/10.1088/0953-8984/1/41/007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Anero, J. G., i P. Español. "Dynamic Boltzmann free-energy functional theory". Europhysics Letters (EPL) 78, nr 5 (22.05.2007): 50005. http://dx.doi.org/10.1209/0295-5075/78/50005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Levy, Mel, i Andreas Görling. "Approach to density-functional ionization energy". Physical Review B 53, nr 3 (15.01.1996): 969–72. http://dx.doi.org/10.1103/physrevb.53.969.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Liang, Yu-Xia, i Rongwei Yang. "Energy functional of the Volterra operator". Banach Journal of Mathematical Analysis 13, nr 2 (kwiecień 2019): 255–74. http://dx.doi.org/10.1215/17358787-2018-0029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

López-Boada, R., R. Pino i E. V. Ludeña. "Locality of the exchange energy functional". Journal of Molecular Structure: THEOCHEM 501-502 (kwiecień 2000): 35–38. http://dx.doi.org/10.1016/s0166-1280(99)00411-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Zarnikau, Jay. "Functional forms in energy demand modeling". Energy Economics 25, nr 6 (listopad 2003): 603–13. http://dx.doi.org/10.1016/s0140-9883(03)00043-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Liang, Ji, Feng Li i Hui-Ming Cheng. "Carbons: Multi-functional Energy Storage Materials". Energy Storage Materials 2 (styczeń 2016): A1—A2. http://dx.doi.org/10.1016/j.ensm.2016.01.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Chen, Jun, Guang Zhu, Weiqing Yang, Jin Yang, Long Lin i Yaqing Bie. "Functional Nanomaterials for Sustainable Energy Technologies". Journal of Nanomaterials 2016 (2016): 1–2. http://dx.doi.org/10.1155/2016/2606459.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Dimitrova, S. S., I. Zh Petkov i M. V. Stoitsov. "A rigorous energy density functional approach". Zeitschrift f�r Physik A Atomic Nuclei 325, nr 1 (marzec 1986): 15–26. http://dx.doi.org/10.1007/bf01294238.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Dasi, Lakshmi P., Kerem Pekkan, Hiroumi D. Katajima i Ajit P. Yoganathan. "Functional analysis of Fontan energy dissipation". Journal of Biomechanics 41, nr 10 (lipiec 2008): 2246–52. http://dx.doi.org/10.1016/j.jbiomech.2008.04.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Ammann, Bernd, Hartmut Weiss i Frederik Witt. "The spinorial energy functional on surfaces". Mathematische Zeitschrift 282, nr 1-2 (28.09.2015): 177–202. http://dx.doi.org/10.1007/s00209-015-1537-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Ghosh, Swapan K. "Energy derivatives in density-functional theory". Chemical Physics Letters 172, nr 1 (sierpień 1990): 77–82. http://dx.doi.org/10.1016/0009-2614(90)87220-l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Zhou, Baojing, i Yan Alexander Wang. "An accurate total energy density functional". International Journal of Quantum Chemistry 107, nr 15 (2007): 2995–3000. http://dx.doi.org/10.1002/qua.21471.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii