Gotowa bibliografia na temat „Energy distributions of desorbates”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Energy distributions of desorbates”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Energy distributions of desorbates"
Georgiou, S., A. Koubenakis, P. Kontoleta i M. Syrrou. "A Comparative Study of the UV Laser Ablation of Van Der Waals Films of Benzene Derivatives". Laser Chemistry 17, nr 2 (1.01.1997): 73–95. http://dx.doi.org/10.1155/1997/45930.
Pełny tekst źródłaKOŁASIŃSKI, KURT W. "DYNAMICS OF HYDROGEN INTERACTIONS WITH Si(100) AND Si(111) SURFACES". International Journal of Modern Physics B 09, nr 21 (30.09.1995): 2753–809. http://dx.doi.org/10.1142/s0217979295001038.
Pełny tekst źródłaImpey, C. D., i G. Neugebauer. "Energy distributions of blazars". Astronomical Journal 95 (luty 1988): 307. http://dx.doi.org/10.1086/114638.
Pełny tekst źródłaStankovic, Ljubisa, Ervin Sejdic i Milos Dakovic. "Vertex-Frequency Energy Distributions". IEEE Signal Processing Letters 25, nr 3 (marzec 2018): 358–62. http://dx.doi.org/10.1109/lsp.2017.2764884.
Pełny tekst źródłaKurucz, Robert L. "Theoretical Stellar Energy Distributions". Highlights of Astronomy 7 (1986): 827–31. http://dx.doi.org/10.1017/s1539299600007358.
Pełny tekst źródłaGonzález-Dávila, J. C. "Energy of generalized distributions". Differential Geometry and its Applications 49 (grudzień 2016): 510–28. http://dx.doi.org/10.1016/j.difgeo.2016.09.009.
Pełny tekst źródłaPoland, Douglas. "Energy distributions of gallium nanoclusters". Journal of Chemical Physics 123, nr 2 (8.07.2005): 024707. http://dx.doi.org/10.1063/1.1992479.
Pełny tekst źródłaBerta, S., D. Lutz, P. Santini, S. Wuyts, D. Rosario, D. Brisbin, A. Cooray i in. "Panchromatic spectral energy distributions ofHerschelsources". Astronomy & Astrophysics 551 (marzec 2013): A100. http://dx.doi.org/10.1051/0004-6361/201220859.
Pełny tekst źródłaImpey, Chris, i Loretta Gregorini. "Energy distributions of radio galaxies". Astronomical Journal 105 (marzec 1993): 853. http://dx.doi.org/10.1086/116477.
Pełny tekst źródłaElvis, Martin, Belinda J. Wilkes, Jonathan C. McDowell, Richard F. Green, Jill Bechtold, S. P. Willner, M. S. Oey, Elisha Polomski i Roc Cutri. "Atlas of quasar energy distributions". Astrophysical Journal Supplement Series 95 (listopad 1994): 1. http://dx.doi.org/10.1086/192093.
Pełny tekst źródłaRozprawy doktorskie na temat "Energy distributions of desorbates"
Del, Fré Samuel. "Études théoriques de la photodésorption d'analogues de glaces moléculaires interstellaires : application au monoxyde de carbone". Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILR039.
Pełny tekst źródłaUnusual amounts of gas-phase molecules are detected in the cold regions (around 10 K) of the interstellar medium (ISM), primarily attributed to the non-thermal desorption of molecules from ices deposited on dust grains. In particular, vacuum ultraviolet (VUV) photon-induced desorption (photodesorption) is considered a major desorption pathway in photon-dominated regions of the ISM. Experimental investigations have revealed that in pure carbon monoxide (CO) ices, a ubiquitous species in the ISM, VUV photodesorption can follow an indirect mechanism of desorption induced by electronic transitions (DIET) for photons with energy between 7 and 10 eV. Nevertheless, the understanding of the underlying molecular mechanisms remains a topic of scientific debate. In this astrochemical context, we present a combined theoretical study using ab initio molecular dynamics (AIMD) based on density functional theory (DFT) and machine learning potentials (PML) constructed with artificial neural networks (ANN) to study the final part of the DIET mechanism in amorphous CO ices. Here, a highly vibrationally excited CO molecule (v = 40) at the center of an aggregate initially composed of 50 CO molecules, optimized and then thermalized at 15 K, triggers the indirect desorption of surface molecules. Our theoretical results reveal that the desorption process consists of three fundamental steps, beginning with a mutual attraction between the vibrationally excited molecule and one or two neighboring molecules, activated by CO bond stretching and facilitated by the steric effect of surrounding molecules. This is followed by a sequence of energy transfers initiated by a collision, resulting in the desorption of vibrationally cold CO molecules in 88% of the AIMD trajectories. Additionally, the theoretical distributions of the internal and translational energy of desorbed molecules remarkably match experimental results, supporting the crucial role of vibrational relaxation in the desorption process. Finally, the first PML constructed from AIMD simulations accurately fit the multidimensional potential energy surface of the system, allowing efficient prediction of aggregate energies and atomic forces. Classical molecular dynamics simulations using these potentials are over 1800 times faster than those based on AIMD while offering precision comparable to DFT
MacKenzie, Todd. "New methods for deblending spectral energy distributions in confused imaging". Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/56192.
Pełny tekst źródłaScience, Faculty of
Physics and Astronomy, Department of
Graduate
Hornsey, Richard Ian. "Factors affecting ion energy distributions in liquid metal ion sources". Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236154.
Pełny tekst źródłaTurrell, Arthur Edward. "Processes driving non-Maxwellian distributions in high energy density plasmas". Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/18083.
Pełny tekst źródłaYang, Guangyuan. "The Energy Goodness-of-fit Test for Univariate Stable Distributions". Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1339476355.
Pełny tekst źródłaStins, O. W. M. "A Retarding Field Energy Analyser to measure the Energy Distributions of Liquid Metal Ion Sources". Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-32306.
Pełny tekst źródłaStins, O. W. M. "A Retarding Field Energy Analyser to measure the Energy Distributions of Liquid Metal Ion Sources". Forschungszentrum Rossendorf, 1994. https://hzdr.qucosa.de/id/qucosa%3A22057.
Pełny tekst źródłaHorwat, Stephen M. "Continuous distributions of non-dilatonic branes". Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=31235.
Pełny tekst źródłaFretwell, Tracey Ann. "Monte Carlo simulation of energy intensity distributions for electron beam lithography". Thesis, University of Manchester, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.576984.
Pełny tekst źródłaDahlgren, David. "Monte Carlo simulations of Linear Energy Transfer distributions in radiation therapy". Thesis, Uppsala universitet, Högenergifysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446550.
Pełny tekst źródłaKsiążki na temat "Energy distributions of desorbates"
Kay, M. J. Ion energy distributions. Manchester: UMIST, 1993.
Znajdź pełny tekst źródłaFretwell, Tracey Ann. Monte Carlo simulation of energy intensity distributions for electron beam lithography. Manchester: University of Manchester, 1995.
Znajdź pełny tekst źródłaHodge, Bri-Mathias. Solar ramping distributions over multiple timescales and weather patterns. Golden, Colo: National Renewable Energy Laboratory, 2011.
Znajdź pełny tekst źródłaJ, Shainsky Lauri, red. Biomass and nutrient distributions in central Oregon second-growth Ponderosa pine ecosystems. Portland, OR (333 S.W. First Avenue, P.O. Box 3890, Portland 97208-3890): U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 1995.
Znajdź pełny tekst źródłaC, Popescu Cristina, Tuffs Richard J i SED2004 International Workshop on the Spectral Energy Distributions of Gas-Rich Galaxies (2004 : Heidelberg, Germany), red. The spectral energy distributions of gas-rich galaxies: Confronting models with data : international workshop, Heidelberg, Germany, 4 - 8 October 2004. Melville, N.Y: American Institute of Physics, 2005.
Znajdź pełny tekst źródłaSED, 2004 (2004 Heidelberg Germany). The spectral energy distributions of gas-rich galaxies: Confronting models with data : international workshop, Heidelberg, Germany, 4-8 October 2004 : SED 2004 Heidelberg. [Melville, N.Y.]: American Institute of Physics, 2005.
Znajdź pełny tekst źródłaAndreo, P. Tables of charge and energy deposition distributions in elemental materials irradiated by plane-parallel electron beams with energies between 0.1 and 100 MeV. Osaka, Japan: Research Institute for Advanced Science and Technology, University of Osaka Prefecture (1-2 Gakuen-cho, Sakai, Osaka 593, Japan), 1992.
Znajdź pełny tekst źródłaPapanikolaou, N. Handbook of calculated electron momentum distributions, compton profiles, and x-ray form factors of elemental solids. Boca Raton: CRC Press, 1991.
Znajdź pełny tekst źródłaUnited States. Congress. House. Committee on Energy and Commerce. Subcommittee on Commerce, Consumer Protection, and Competitiveness. Long-term care insurance standards: Hearing before the Subcommittee on Commerce, Consumer Protection, and Competitiveness of the Committee on Energy and Commerce, House of Representatives, One Hundred Second Congress, first session, on H.R. 1205, H.R. 1916, and H.R. 2378, bills to regulate long-term care insurance policies, to allow tax-free distributions from IRA's for purchase of long-term care insurance by certain individuals, and to establish federal standards for long-term care insurance policies, October 24, 1991. Washington: U.S. G.P.O., 1992.
Znajdź pełny tekst źródłaNational Aeronautics and Space Administration (NASA) Staff. Far-Infrared Spectral Energy Distributions of Quasars. Independently Published, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "Energy distributions of desorbates"
Dapor, Maurizio. "Electron Energy Distributions". W Transport of Energetic Electrons in Solids, 121–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43264-5_10.
Pełny tekst źródłaDapor, Maurizio. "Electron Energy Distributions". W Transport of Energetic Electrons in Solids, 93–105. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03883-4_8.
Pełny tekst źródłaDapor, Maurizio. "Electron Energy Distributions". W Transport of Energetic Electrons in Solids, 95–108. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47492-2_8.
Pełny tekst źródłaKroesen, G. M. W., M. Grift, R. J. M. M. Snijkers i F. J. Hoog. "Ion Energy Distributions". W Advanced Technologies Based on Wave and Beam Generated Plasmas, 149–73. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-0633-9_8.
Pełny tekst źródłaDapor, Maurizio. "Electron Energy Distributions". W Transport of Energetic Electrons in Solids, 151–72. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37242-1_10.
Pełny tekst źródłaStarzak, Michael E. "Maxwell–Boltzmann Distributions". W Energy and Entropy, 197–216. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-77823-5_13.
Pełny tekst źródłaStanković, Ljubiša, Miloš Daković i Ervin Sejdić. "Vertex-Frequency Energy Distributions". W Signals and Communication Technology, 377–415. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03574-7_11.
Pełny tekst źródłaKurucz, Robert L. "Theoretical Stellar Energy Distributions". W Highlights of Astronomy, 827–31. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-010-9376-7_124.
Pełny tekst źródłaDa Costa Lewis, Nigel. "Modeling and Fitting Price Distributions". W Energy Risk Modeling, 65–106. London: Palgrave Macmillan UK, 2005. http://dx.doi.org/10.1057/9780230523784_5.
Pełny tekst źródłaKellogg, G. J., P. E. Sokol i J. White. "High Energy Inelastic Neutron Scattering from Hydrogen in Cesium Intercalated Graphite". W Momentum Distributions, 351–54. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-2554-1_27.
Pełny tekst źródłaStreszczenia konferencji na temat "Energy distributions of desorbates"
Hiskes, J. R. "Electron energy distributions and vibrational population distributions". W Production and neutralization of negative ions and beams. AIP, 1990. http://dx.doi.org/10.1063/1.39654.
Pełny tekst źródłaPolletta, M., L. Maraschi, L. Chiappetti, G. Trinchieri, M. Giorgetti, A. Comastri, L. Angelini i M. Cappi. "Intrinsic AGN Spectral Energy Distributions". W X-RAY ASTRONOMY 2009; PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES: Proceedings of the International Conference. AIP, 2010. http://dx.doi.org/10.1063/1.3475317.
Pełny tekst źródłaWOHLEVER, J., i R. BERNHARD. "Energy distributions in rods and beams". W 12th Aeroacoustic Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1122.
Pełny tekst źródłaGay Ducati, Maria Beatriz. "Dilepton Backward Rapidity Distributions". W Diffraction 06, International Workshop on Diffraction in High-Energy Physics. Trieste, Italy: Sissa Medialab, 2007. http://dx.doi.org/10.22323/1.035.0053.
Pełny tekst źródłaJimenez-Delgado, Pedro. "Dynamical Parton Distributions at NNLO". W European Physical Society Europhysics Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.084.0307.
Pełny tekst źródłaGoldstein, Gary R. "Determining quark helicity from jet distributions". W HIGH−ENERGY SPIN PHYSICS/EIGHTH INTERNATIONAL SYMPOSIUM. AIP, 1989. http://dx.doi.org/10.1063/1.38276.
Pełny tekst źródłaHautmann, Francesco. "TMD parton distributions and splitting functions". W 35th International Conference of High Energy Physics. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.120.0150.
Pełny tekst źródłaWallon, Samuel, Mounir El Beiyad, Bernard Pire, Mathieu Segond i Lech Szymanowski. "On chiral-odd Generalized Parton Distributions". W 35th International Conference of High Energy Physics. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.120.0178.
Pełny tekst źródłaWan, X., L. Chen, D. Z. Jin, W. Xiang i X. H. Tan. "Energy distributions and angular distributions of pulsed plasmas based on vacuum surface flashover". W 2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). IEEE, 2016. http://dx.doi.org/10.1109/deiv.2016.7748687.
Pełny tekst źródłaWu, Alan C., Michael A. Lieberman i John P. Verboncoeur. "Ion Energy Distributions in Multifrequency Capacitive Discharges". W 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4345772.
Pełny tekst źródłaRaporty organizacyjne na temat "Energy distributions of desorbates"
Skurikhin, Alexei N., i Richard J. Stead. Seismic Spectrogram Recognition by Matching the Energy Distributions. Office of Scientific and Technical Information (OSTI), listopad 2016. http://dx.doi.org/10.2172/1331246.
Pełny tekst źródłaFallen, Christopher T. Determining Energy Distributions of HF-Accelerated Electrons at HAARP. Fort Belvoir, VA: Defense Technical Information Center, listopad 2015. http://dx.doi.org/10.21236/ad1000661.
Pełny tekst źródłaWoodworth, J. R., M. E. Riley i D. C. Meister. Ion energy and angular distributions in inductively coupled Argon RF discharges. Office of Scientific and Technical Information (OSTI), marzec 1996. http://dx.doi.org/10.2172/212756.
Pełny tekst źródłaSchivell, J., D. A. Monticello i S. J. Zweben. Calculation of charged fusion product distributions in space, energy, and time. Office of Scientific and Technical Information (OSTI), luty 1992. http://dx.doi.org/10.2172/5609910.
Pełny tekst źródłaD.N. Ruzic, M.J. Goeckner, Samuel A. Cohen i Zhehui Wang. Nitrogen Atom Energy Distributions in a Hollow-cathode Planar Sputtering Magnetron. Office of Scientific and Technical Information (OSTI), czerwiec 1999. http://dx.doi.org/10.2172/8184.
Pełny tekst źródłaSchivell, J., D. A. Monticello i S. J. Zweben. Calculation of charged fusion product distributions in space, energy, and time. Office of Scientific and Technical Information (OSTI), luty 1992. http://dx.doi.org/10.2172/10130956.
Pełny tekst źródłaZhou, Li. A Retarding-potential Analyzer for Measuring Energy Distributions in Electron Beams. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.6628.
Pełny tekst źródłaWoodworth, J. R., M. E. Riley i T. W. Hamilton. Ion energy and angular distributions in inductively driven RF discharges in chlorine. Office of Scientific and Technical Information (OSTI), marzec 1996. http://dx.doi.org/10.2172/231654.
Pełny tekst źródłaKerns, J. A. Alpha particle density and energy distributions in tandem mirrors using Monte-Carlo techniques. Office of Scientific and Technical Information (OSTI), maj 1986. http://dx.doi.org/10.2172/5728137.
Pełny tekst źródłaStanley, B. J., i G. Guiochon. Numerical estimation of adsorption energy distributions from adsorption isotherm data with the expectation-maximization method. Office of Scientific and Technical Information (OSTI), sierpień 1993. http://dx.doi.org/10.2172/10173477.
Pełny tekst źródła