Gotowa bibliografia na temat „Energy and glucose homeostasis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Energy and glucose homeostasis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Energy and glucose homeostasis"
Lam, Carol K. L., Madhu Chari i Tony K. T. Lam. "CNS Regulation of Glucose Homeostasis". Physiology 24, nr 3 (czerwiec 2009): 159–70. http://dx.doi.org/10.1152/physiol.00003.2009.
Pełny tekst źródłaPattaranit, Ratchada, i Hugo Antonius van den Berg. "Mathematical models of energy homeostasis". Journal of The Royal Society Interface 5, nr 27 (8.07.2008): 1119–35. http://dx.doi.org/10.1098/rsif.2008.0216.
Pełny tekst źródłaMarty, Nell, Michel Dallaporta i Bernard Thorens. "Brain Glucose Sensing, Counterregulation, and Energy Homeostasis". Physiology 22, nr 4 (sierpień 2007): 241–51. http://dx.doi.org/10.1152/physiol.00010.2007.
Pełny tekst źródłaLópez-Gambero, A. J., F. Martínez, K. Salazar, M. Cifuentes i F. Nualart. "Brain Glucose-Sensing Mechanism and Energy Homeostasis". Molecular Neurobiology 56, nr 2 (24.05.2018): 769–96. http://dx.doi.org/10.1007/s12035-018-1099-4.
Pełny tekst źródłaSoty, Maud, Amandine Gautier-Stein, Fabienne Rajas i Gilles Mithieux. "Gut-Brain Glucose Signaling in Energy Homeostasis". Cell Metabolism 25, nr 6 (czerwiec 2017): 1231–42. http://dx.doi.org/10.1016/j.cmet.2017.04.032.
Pełny tekst źródłaWang, Yan, Markey C. McNutt, Serena Banfi, Michael G. Levin, William L. Holland, Viktoria Gusarova, Jesper Gromada, Jonathan C. Cohen i Helen H. Hobbs. "Hepatic ANGPTL3 regulates adipose tissue energy homeostasis". Proceedings of the National Academy of Sciences 112, nr 37 (24.08.2015): 11630–35. http://dx.doi.org/10.1073/pnas.1515374112.
Pełny tekst źródłaSeo, J., E. S. Fortuno, J. M. Suh, D. Stenesen, W. Tang, E. J. Parks, C. M. Adams, T. Townes i J. M. Graff. "Atf4 Regulates Obesity, Glucose Homeostasis, and Energy Expenditure". Diabetes 58, nr 11 (18.08.2009): 2565–73. http://dx.doi.org/10.2337/db09-0335.
Pełny tekst źródłaGiridharan, NV. "Glucose & energy homeostasis: Lessons from animal studies". Indian Journal of Medical Research 148, nr 5 (2018): 659. http://dx.doi.org/10.4103/ijmr.ijmr_1737_18.
Pełny tekst źródłaPepino, Marta Y., i Christina Bourne. "Non-nutritive sweeteners, energy balance, and glucose homeostasis". Current Opinion in Clinical Nutrition and Metabolic Care 14, nr 4 (lipiec 2011): 391–95. http://dx.doi.org/10.1097/mco.0b013e3283468e7e.
Pełny tekst źródłavan Praag, H., M. Fleshner, M. W. Schwartz i M. P. Mattson. "Exercise, Energy Intake, Glucose Homeostasis, and the Brain". Journal of Neuroscience 34, nr 46 (12.11.2014): 15139–49. http://dx.doi.org/10.1523/jneurosci.2814-14.2014.
Pełny tekst źródłaRozprawy doktorskie na temat "Energy and glucose homeostasis"
Forsyth, Robert J. "The contribution of astrocyte glycogen to brain energy homeostasis". Thesis, University of Newcastle Upon Tyne, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361387.
Pełny tekst źródłaBurke, Luke Kennedy. "Neurocircuitry underlying serotonin's effects on energy and glucose homeostasis". Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708592.
Pełny tekst źródłaMatthäus, Dörte. "The role of CADM1 in energy and glucose homeostasis". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16905.
Pełny tekst źródłaMore than 300 million people world-wide are affected by diabetes, the majority suffering from type 2 diabetes. Type 2 diabetes is characterized by insulin resistance, usually caused by obesity and overweight. Enhanced pancreatic insulin secretion largely compensates insulin resistance for years. A failure of pancreatic beta-cells to meet increased insulin demands drastically increases blood glucose levels and marks the onset of type 2 diabetes. Besides environmental influences, mainly elevated food intake and reduced physical activity, also genetic mutations are important factors in the pathophysiology of type 2 diabetes. Recent literature highlights the role of microRNA 375 (miR-375) in the growth and function of pancreatic insulin-producing beta-cells. MiR-375 gene expression is regulated in diabetic humans and rodents, suggesting that this microRNA is involved in the pathogenesis of type 2 diabetes. Genes regulated by miR-375 have been described in pancreatic beta-cells. Nevertheless, the exact mechanisms how miR-375 regulates beta-cell growth and insulin secretion have not been understood. Cell adhesion molecule 1 (CADM1) is a known target of miR-375 and has mainly been described as regulator of synapse number and synaptic function in the brain. CADM1 is also expressed in pancreatic beta-cells and might regulate beta-cell growth and function and might be involved in the control of glucose and energy homeostasis. The aim of this work was to investigate whether CADM1 in pancreatic beta-cells or neuronal tissue contributes to the regulation of energy and glucose homeostasis by using total and conditional Cadm1 deficient mice. Total Cadm1 deficient (Cadm1KO) mice showed increased sensitivity to glucose and insulin as well as enhanced glucose-stimulated insulin secretion compared to littermate control mice. Elevated glucose-stimulated insulin secretion after Cadm1 depletion could be confirmed in an in vitro beta-cell model.
Wang, Xun. "IRF3 is a Critical Regulator of Adipose Glucose and Energy Homeostasis". Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10537.
Pełny tekst źródłaHall, Jessica Ann. "Thyroid Hormone and Insulin Metabolic Actions on Energy and Glucose Homeostasis". Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11663.
Pełny tekst źródłaRahman, S. A. "Investigating the role of gut hormones in energy and glucose homeostasis". Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1417078/.
Pełny tekst źródłaStump, Madeliene. "The role of brain PPAR[gamma] in regulation of energy balance and glucose homeostasis". Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/6000.
Pełny tekst źródłaAatsinki, S. M. (Sanna-Mari). "Regulation of hepatic glucose homeostasis and Cytochrome P450 enzymes by energy-sensing coactivator PGC-1α". Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526208053.
Pełny tekst źródłaTiivistelmä Peroksisomiproliferaattori-aktivoituvan reseptori γ:n koaktivaattori 1α (PGC-1α) on merkittävä glukoosiaineenvaihdunnan ja mitokondrioiden toiminnan säätelijä korkeaenergisissä soluissa ja kudoksissa. PGC-1α:a säädellään monin tavoin: sekä transkriptionaalisella säätelyllä että transkription jälkeisellä muokkauksella on merkittävä rooli. Monet ulkoiset tekijät säätelevät PGC-1α:n aktiivisuutta, joka puolestaan säätelee solunsisäisiä signaalireittejä vastaamaan tähän signaaliin. Esimerkiksi paasto ja diabetes mellitus (DM) ovat fysiologisia tiloja, jotka lisäävät voimakkaasti PGC-1α:n ilmentymistä maksassa, jolloin glukoosin uudistuotanto eli glukoneogeneesi kiihtyy. Tässä väitöskirjassa tutkittiin PGC-1α:n säätelyä sekä PGC-1α -säädeltyjä signaalireittejä maksassa. Osoitimme, että tyypin 2 diabeteslääke metformiini indusoi PGC-1α:n ilmentymistä maksassa, vastoin aikaisempia käsityksiä. PGC-1α indusoitui AMPK:n ja SIRT1:n välityksellä, säädelleen edelleen mitokondriaalisten geenien aktiivisuutta. Samalla glukoneogeneesi kuitenkin repressoitui muilla mekanismeilla. Lisäksi osoitimme, että PGC-1α indusoi tulehdusreaktiota vaimentavaa interleukiini 1 reseptorin antagonistia (IL1Rn). PGC-1α esti interleukiini 1β:n aiheuttamaa tulehdusvastetta hepatosyyteissä. Lisäksi väitöskirjassa tunnistettiin uusia, PGC-1α -säädeltyjä lääkeaineita ja elimistön sisäisiä yhdisteitä metaboloivia sytokromi P450 -entsyymejä (CYP). Hiiren CYP2A5:n ilmentymisen osoitettiin olevan PGC-1α- ja HNF4α-välitteistä. Lisäksi osoitettiin, että D-vitamiinia metaboloivat CYP2R1 ja CYP24A1 ovat uusia PGC-1α -säädeltyjä geenejä. Tämä löydös viittaa siihen, että PGC-1α:lla on rooli aktiivisen D-vitamiinin säätelyssä. Tämän väitöskirjan löydökset lisäävät tietoa glukoosiaineenvaihdunnan häiriöiden kuten tyypin 2 diabeteksen molekulaarisista mekanismeista, joita voidaan hyödyntää mahdollisten uusien lääkeaineiden kehittämisessä. Lisäksi väitöskirjassa osoitettiin, että D-vitamiinimetabolia on kytköksissä energia-aineenvaihduntaan ja että PGC-1α:lla on tässä rooli, jota ei aiemmin ole tunnettu
Eftychidis, Vasileios. "Elucidating the principal role of cholecystokinin neurons of the ventromedial hypothalamic nucleus in energy homeostasis". Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:906a0aa6-847a-43b8-a527-458252aca825.
Pełny tekst źródłaBirkenfeld, Andreas L. [Verfasser]. "The role of natriuretic peptides in the regulation of energy metabolism, lipid- and glucose homeostasis / Andreas L. Birkenfeld". Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2013. http://d-nb.info/1035182424/34.
Pełny tekst źródłaKsiążki na temat "Energy and glucose homeostasis"
Mladen, Vranic, Efendić Suad i Hollenberg Charles H. 1930-, red. Fuel homeostasis and the nervous system. New York: Plenum Press, 1991.
Znajdź pełny tekst źródłainstitutet, Karolinska, red. Food deprivation and glucose homeostasis in hemorrhagic stress. Stockholm: [s.n.], 1987.
Znajdź pełny tekst źródła1950-, Pagliassotti Michael J., Davis Stephen N. 1955- i Cherrington Alan 1946-, red. The role of the liver in maintaining glucose homeostasis. Austin: Landes, 1994.
Znajdź pełny tekst źródłaPolakof, Sergio. Brain glucosensing: Physiological implications. Hauppauge, N.Y: Nova Science Publishers, 2010.
Znajdź pełny tekst źródłaSarabia, Vivian E. Calcium homeostasis and regulation of glucose uptake in human skeletal muscle cells in culture. Ottawa: National Library of Canada, 1990.
Znajdź pełny tekst źródłaHodakoski, Cindy Marie. P-REX2 PH Domain Inhibition of PTEN Regulates Transformation, Insulin Signaling, and Glucose Homeostasis. [New York, N.Y.?]: [publisher not identified], 2012.
Znajdź pełny tekst źródłaMiller, Janette Brand. The new glucose revolution pocket guide to sugar & energy. New York: Marlowe, 2004.
Znajdź pełny tekst źródłaGema, Frühbeck, i Nutrition Society (Great Britain), red. Peptides in energy balance and obesity. Wallingford, Oxfordshire: CABI Pub. in association with the Nutrition Society, 2009.
Znajdź pełny tekst źródłaMuromt͡sev, V. A. Medit͡sina v XXI veke: Ot drevneĭshikh tradit͡siĭ do vysokikh tekhnologiĭ. Sankt-Peterburg: Izd-vo "Intan", 1998.
Znajdź pełny tekst źródłaPool, Ontario Assessment Instrument, red. Energy and the living cell: Draft. Toronto: Minister of Education, Ontario, 1989.
Znajdź pełny tekst źródłaCzęści książek na temat "Energy and glucose homeostasis"
Kirchner, Henriette, Matthias Tschöp i Jenny Tong. "GOAT and the Regulation of Energy and Glucose Homeostasis". W Ghrelin in Health and Disease, 131–47. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-903-7_7.
Pełny tekst źródłaKamstra, Kaj, i Alexander Tups. "Neuroendocrine Interactions in the Control of Glucose- and Energy Homeostasis". W Physiological Consequences of Brain Insulin Action, 63–78. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003079927-5.
Pełny tekst źródłaMounien, Lourdes, i Bernard Thorens. "Central Glucose Sensing and Control of Food Intake and Energy Homeostasis". W Metabolic Syndrome, 29–51. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470910016.ch2.
Pełny tekst źródłaGuillaume, Maeva, Alexandra Montagner, Coralie Fontaine, Françoise Lenfant, Jean-François Arnal i Pierre Gourdy. "Nuclear and Membrane Actions of Estrogen Receptor Alpha: Contribution to the Regulation of Energy and Glucose Homeostasis". W Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity, 401–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70178-3_19.
Pełny tekst źródłaAlsahli, Mazen, i John E. Gerich. "Normal Glucose Homeostasis". W Principles of Diabetes Mellitus, 1–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20797-1_2-1.
Pełny tekst źródłaAlsahli, Mazen, Muhammad Z. Shrayyef i John E. Gerich. "Normal Glucose Homeostasis". W Principles of Diabetes Mellitus, 1–20. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-20797-1_2-2.
Pełny tekst źródłaGerich, John E., Steven D. Wittlin i Christian Meyer. "Normal Glucose Homeostasis". W Principles of Diabetes Mellitus, 39–56. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-6260-0_2.
Pełny tekst źródłaAlsahli, Mazen, Muhammad Z. Shrayyef i John E. Gerich. "Normal Glucose Homeostasis". W Principles of Diabetes Mellitus, 23–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-18741-9_2.
Pełny tekst źródłaShrayyef, Muhammad Z., i John E. Gerich. "Normal Glucose Homeostasis". W Principles of Diabetes Mellitus, 19–35. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-09841-8_2.
Pełny tekst źródłaFerrannini, Ele, i Marta Seghieri. "Overview of Glucose Homeostasis". W Endocrinology, 1–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-45015-5_1.
Pełny tekst źródłaStreszczenia konferencji na temat "Energy and glucose homeostasis"
Ahmed, Sumaya, i Nasser Rizk. "The Expression of Bile Acid Receptor TGR5 in Adipose Tissue in Diet-Induced Obese Mice". W Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0212.
Pełny tekst źródłaBelmon, Anchana P., i Jeraldin Auxillia. "An Unprecedented PSO-PID Optimized Glucose Homeostasis". W 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE). IEEE, 2020. http://dx.doi.org/10.1109/icstcee49637.2020.9277306.
Pełny tekst źródłaKim, Jaeyeon, Gerald M. Saidel, John P. Kirwan i Marco E. Cabrera. "Computational Model of Glucose Homeostasis During Exercise". W Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.260736.
Pełny tekst źródłaKim, Jaeyeon, Gerald M. Saidel, John P. Kirwan i Marco E. Cabrera. "Computational Model of Glucose Homeostasis During Exercise". W Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4397397.
Pełny tekst źródłaPanwar, Madhuri, Amit Acharyya i Rishad A. Shafik. "Non-invasive Blood Glucose Estimation Methodology Using Predictive Glucose Homeostasis Models". W 2018 8th International Symposium on Embedded Computing and System Design (ISED). IEEE, 2018. http://dx.doi.org/10.1109/ised.2018.8703991.
Pełny tekst źródłaSingh, Neeraj Kumar, i Hao Wang. "Virtual Environment Model of Glucose Homeostasis for Diabetes Patients". W 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). IEEE, 2019. http://dx.doi.org/10.1109/icphys.2019.8780383.
Pełny tekst źródłaVilla E, Yisel C., i Julian M. Garcia G. "Modeling of the Human Pancreas Function in Glucose Homeostasis". W 2018 Argentine Conference on Automatic Control (AADECA). IEEE, 2018. http://dx.doi.org/10.23919/aadeca.2018.8577449.
Pełny tekst źródłaShrestha, Man Mohan, Chun-Yan Lim i Weiping Han. "Actin Cytoskeletal Remodeling in the Regulation of Glucose Homeostasis". W International Conference on Photonics and Imaging in Biology and Medicine. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/pibm.2017.t1b.2.
Pełny tekst źródłaNevis, Ruiz M., Colorado G. Vivian i Lema-Perez Laura. "A Coupled Model of Glucose Homeostasis From a Fieldbus View". W 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC). IEEE, 2019. http://dx.doi.org/10.1109/ccac.2019.8920895.
Pełny tekst źródłaBerggren, Per-Olof. "The islet of Langerhans is a master regulator of glucose homeostasis". W 2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM 2010). IEEE, 2010. http://dx.doi.org/10.1109/photwtm.2010.5421943.
Pełny tekst źródłaRaporty organizacyjne na temat "Energy and glucose homeostasis"
Puigserver, Pere. Maintenance of Glucose Homeostasis through Acetylation of the Metabolic Transcriptional Coactivator PGC-1alpha. Fort Belvoir, VA: Defense Technical Information Center, luty 2007. http://dx.doi.org/10.21236/ada467976.
Pełny tekst źródłaPuigserver, Pere. Maintenance of Glucose Homeostasis Through Acetylation of the Metabolic Transcriptional Coactivator PGC1-alpha. Fort Belvoir, VA: Defense Technical Information Center, luty 2011. http://dx.doi.org/10.21236/ada551301.
Pełny tekst źródłaSosa Munguía, Paulina del Carmen, Verónica Ajelet Vargaz Guadarrama, Marcial Sánchez Tecuatl, Mario Garcia Carrasco, Francesco Moccia i Roberto Berra-Romani. Diabetes mellitus alters intracellular calcium homeostasis in vascular endothelial cells: a systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, maj 2022. http://dx.doi.org/10.37766/inplasy2022.5.0104.
Pełny tekst źródłafrydman, judith. Mechanism and function of the chaperonin from Methanococcus maripaludis: implications for archaeal protein homeostasis and energy production. Office of Scientific and Technical Information (OSTI), marzec 2018. http://dx.doi.org/10.2172/1429063.
Pełny tekst źródłaChen, Jiankun, Yingming Gu, Lihong Yin, Minyi He, Na Liu, Yue Lu, Changcai Xie, Jiqiang Li i Yu Chen. Network meta-analysis of curative efficacy of different acupuncture methods on obesity combined with insulin resistance. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, sierpień 2022. http://dx.doi.org/10.37766/inplasy2022.8.0075.
Pełny tekst źródłaCorscadden, Louise, i Anjali Singh. Metabolism And Measurable Metabolic Parameters. ConductScience, grudzień 2022. http://dx.doi.org/10.55157/me20221213.
Pełny tekst źródłaCahaner, Avigdor, Sacit F. Bilgili, Orna Halevy, Roger J. Lien i Kellye S. Joiner. effects of enhanced hypertrophy, reduced oxygen supply and heat load on breast meat yield and quality in broilers. United States Department of Agriculture, listopad 2014. http://dx.doi.org/10.32747/2014.7699855.bard.
Pełny tekst źródłaGothilf, Yoav, Roger Cone, Berta Levavi-Sivan i Sheenan Harpaz. Genetic manipulations of MC4R for increased growth and feed efficiency in fish. United States Department of Agriculture, styczeń 2016. http://dx.doi.org/10.32747/2016.7600043.bard.
Pełny tekst źródłaBoisclair, Yves R., i Arieh Gertler. Development and Use of Leptin Receptor Antagonists to Increase Appetite and Adaptive Metabolism in Ruminants. United States Department of Agriculture, styczeń 2012. http://dx.doi.org/10.32747/2012.7697120.bard.
Pełny tekst źródłaGranot, David, Scott Holaday i Randy D. Allen. Enhancing Cotton Fiber Elongation and Cellulose Synthesis by Manipulating Fructokinase Activity. United States Department of Agriculture, 2008. http://dx.doi.org/10.32747/2008.7613878.bard.
Pełny tekst źródła