Artykuły w czasopismach na temat „EMD - Neural networks”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „EMD - Neural networks”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zheng, Jing Wen, Shi Xiao Li i Yang Kun. "A New Hybrid Model for Forecasting Crude Oil Price and the Techniques in the Model". Advanced Materials Research 974 (czerwiec 2014): 310–17. http://dx.doi.org/10.4028/www.scientific.net/amr.974.310.
Pełny tekst źródłaSaâdaoui, Foued, i Othman Ben Messaoud. "Multiscaled Neural Autoregressive Distributed Lag: A New Empirical Mode Decomposition Model for Nonlinear Time Series Forecasting". International Journal of Neural Systems 30, nr 08 (26.06.2020): 2050039. http://dx.doi.org/10.1142/s0129065720500392.
Pełny tekst źródłaLei, Yu, Danning Zhao i Hongbing Cai. "Ultra Short-term Prediction of Pole Coordinates via Combination of Empirical Mode Decomposition and Neural Networks". Artificial Satellites 51, nr 4 (1.12.2016): 149–61. http://dx.doi.org/10.1515/arsa-2016-0013.
Pełny tekst źródłaGe, Yujia, Yurong Nan i Lijun Bai. "A Hybrid Prediction Model for Solar Radiation Based on Long Short-Term Memory, Empirical Mode Decomposition, and Solar Profiles for Energy Harvesting Wireless Sensor Networks". Energies 12, nr 24 (13.12.2019): 4762. http://dx.doi.org/10.3390/en12244762.
Pełny tekst źródłaJiang, Qi, Yuxin Cheng, Haozhe Le, Chunquan Li i Peter X. Liu. "A Stacking Learning Model Based on Multiple Similar Days for Short-Term Load Forecasting". Mathematics 10, nr 14 (13.07.2022): 2446. http://dx.doi.org/10.3390/math10142446.
Pełny tekst źródłaHuang, Xiaoxin, i Xiuxiu Chen. "A Quantitative Model of International Trade Based on Deep Neural Network". Computational Intelligence and Neuroscience 2022 (31.05.2022): 1–11. http://dx.doi.org/10.1155/2022/9811358.
Pełny tekst źródłaZhou, Shuyi, Brandon J. Bethel, Wenjin Sun, Yang Zhao, Wenhong Xie i Changming Dong. "Improving Significant Wave Height Forecasts Using a Joint Empirical Mode Decomposition–Long Short-Term Memory Network". Journal of Marine Science and Engineering 9, nr 7 (5.07.2021): 744. http://dx.doi.org/10.3390/jmse9070744.
Pełny tekst źródłaZhang, Boning. "Foreign exchange rates forecasting with an EMD-LSTM neural networks model". Journal of Physics: Conference Series 1053 (lipiec 2018): 012005. http://dx.doi.org/10.1088/1742-6596/1053/1/012005.
Pełny tekst źródłaChengzhao, Zhang, Pan Heiping i Zhou Ke. "Comparison of Back Propagation Neural Networks and EMD-Based Neural Networks in Forecasting the Three Major Asian Stock Markets". Journal of Applied Sciences 15, nr 1 (15.12.2014): 90–99. http://dx.doi.org/10.3923/jas.2015.90.99.
Pełny tekst źródłaShu, Wangwei, i Qiang Gao. "Forecasting Stock Price Based on Frequency Components by EMD and Neural Networks". IEEE Access 8 (2020): 206388–95. http://dx.doi.org/10.1109/access.2020.3037681.
Pełny tekst źródłaTeng, Xian Bin, Jun Dong Zhang, Shi Hai Zhang i Ran Ran Wang. "Fault Diagnosis of Diesel Engine Based on Wavelet Analysis, EMD and Neural Networks". Advanced Materials Research 211-212 (luty 2011): 1031–35. http://dx.doi.org/10.4028/www.scientific.net/amr.211-212.1031.
Pełny tekst źródłaMEHBOOB, ZAREEN, i HUJUN YIN. "INFORMATION QUANTIFICATION OF EMPIRICAL MODE DECOMPOSITION AND APPLICATIONS TO FIELD POTENTIALS". International Journal of Neural Systems 21, nr 01 (luty 2011): 49–63. http://dx.doi.org/10.1142/s012906571100264x.
Pełny tekst źródłaLin, Hualing, i Qiubi Sun. "Crude Oil Prices Forecasting: An Approach of Using CEEMDAN-Based Multi-Layer Gated Recurrent Unit Networks". Energies 13, nr 7 (25.03.2020): 1543. http://dx.doi.org/10.3390/en13071543.
Pełny tekst źródłaGui, Sibo, Meng Shi, Zhaolong Li, Haitao Wu, Quansheng Ren i Jianye Zhao. "A Deep-Learning-Based Method for Optical Transmission Link Assessment Applied to Optical Clock Comparisons". Photonics 10, nr 8 (10.08.2023): 920. http://dx.doi.org/10.3390/photonics10080920.
Pełny tekst źródłaHassard, Alan. "Investigaton of Eye Movement Desensitization in Pain Clinic Patients". Behavioural and Cognitive Psychotherapy 23, nr 2 (kwiecień 1995): 177–85. http://dx.doi.org/10.1017/s1352465800014429.
Pełny tekst źródłaHU, Niaoqing. "Fault Diagnosis for Planetary Gearbox Based on EMD and Deep Convolutional Neural Networks". Journal of Mechanical Engineering 55, nr 7 (2019): 9. http://dx.doi.org/10.3901/jme.2019.07.009.
Pełny tekst źródłaCarmona, A. M., i G. Poveda. "Prediction of mean monthly river discharges in Colombia through Empirical Mode Decomposition". Proceedings of the International Association of Hydrological Sciences 366 (10.04.2015): 172. http://dx.doi.org/10.5194/piahs-366-172-2015.
Pełny tekst źródłaLi, Chao, Quanjie Guo, Lei Shao, Ji Li i Han Wu. "Research on Short-Term Load Forecasting Based on Optimized GRU Neural Network". Electronics 11, nr 22 (21.11.2022): 3834. http://dx.doi.org/10.3390/electronics11223834.
Pełny tekst źródłaCenteno-Bautista, Manuel A., Angel H. Rangel-Rodriguez, Andrea V. Perez-Sanchez, Juan P. Amezquita-Sanchez, David Granados-Lieberman i Martin Valtierra-Rodriguez. "Electrocardiogram Analysis by Means of Empirical Mode Decomposition-Based Methods and Convolutional Neural Networks for Sudden Cardiac Death Detection". Applied Sciences 13, nr 6 (10.03.2023): 3569. http://dx.doi.org/10.3390/app13063569.
Pełny tekst źródłaWu, Jian Hua, Zheng Qiang Yao, Y. Jin, H. B. Xie, Y. S. Zhao i L. Ch Xu. "Application of Hilbert-Huang Transform to Predict Grinding Surface Quality On-Line". Key Engineering Materials 304-305 (luty 2006): 227–31. http://dx.doi.org/10.4028/www.scientific.net/kem.304-305.227.
Pełny tekst źródłaMbatha, Nkanyiso, i Hassan Bencherif. "Time Series Analysis and Forecasting Using a Novel Hybrid LSTM Data-Driven Model Based on Empirical Wavelet Transform Applied to Total Column of Ozone at Buenos Aires, Argentina (1966–2017)". Atmosphere 11, nr 5 (30.04.2020): 457. http://dx.doi.org/10.3390/atmos11050457.
Pełny tekst źródłaWang, Yijun, Peiqian Guo, Nan Ma i Guowei Liu. "Robust Wavelet Transform Neural-Network-Based Short-Term Load Forecasting for Power Distribution Networks". Sustainability 15, nr 1 (24.12.2022): 296. http://dx.doi.org/10.3390/su15010296.
Pełny tekst źródłaFeng, Zhijie, Po Hu, Shuiqing Li i Dongxue Mo. "Prediction of Significant Wave Height in Offshore China Based on the Machine Learning Method". Journal of Marine Science and Engineering 10, nr 6 (20.06.2022): 836. http://dx.doi.org/10.3390/jmse10060836.
Pełny tekst źródłaAhmed, Ammar, Youssef Serrestou, Kosai Raoof i Jean-François Diouris. "Empirical Mode Decomposition-Based Feature Extraction for Environmental Sound Classification". Sensors 22, nr 20 (11.10.2022): 7717. http://dx.doi.org/10.3390/s22207717.
Pełny tekst źródłaPopa, Stefan Lucian, Teodora Surdea-Blaga, Dan Lucian Dumitrascu, Giuseppe Chiarioni, Edoardo Savarino, Liliana David, Abdulrahman Ismaiel i in. "Automatic Diagnosis of High-Resolution Esophageal Manometry Using Artificial Intelligence". Journal of Gastrointestinal and Liver Diseases 31, nr 4 (16.12.2022): 383–89. http://dx.doi.org/10.15403/jgld-4525.
Pełny tekst źródłaDryuchenko, M. A., i A. A. Sirota. "Image stegoanalysis using deep neural networks and heteroassociative integral transformations". Prikladnaya Diskretnaya Matematika, nr 55 (2022): 35–58. http://dx.doi.org/10.17223/20710410/55/3.
Pełny tekst źródłaJiao, Xiaoxuan, Bo Jing, Yifeng Huang, Juan Li i Guangyue Xu. "Research on fault diagnosis of airborne fuel pump based on EMD and probabilistic neural networks". Microelectronics Reliability 75 (sierpień 2017): 296–308. http://dx.doi.org/10.1016/j.microrel.2017.03.007.
Pełny tekst źródłaLiu, Die, Yihao Bao, Yingying He i Likai Zhang. "A Data Loss Recovery Technique Using EMD-BiGRU Algorithm for Structural Health Monitoring". Applied Sciences 11, nr 21 (27.10.2021): 10072. http://dx.doi.org/10.3390/app112110072.
Pełny tekst źródłaKang, Aiqing, Qingxiong Tan, Xiaohui Yuan, Xiaohui Lei i Yanbin Yuan. "Short-Term Wind Speed Prediction Using EEMD-LSSVM Model". Advances in Meteorology 2017 (2017): 1–22. http://dx.doi.org/10.1155/2017/6856139.
Pełny tekst źródłaMa, Yu. "Two models for predicting stock prices in combination with LSTM". Highlights in Business, Economics and Management 5 (16.02.2023): 664–73. http://dx.doi.org/10.54097/hbem.v5i.5256.
Pełny tekst źródłaYu, Jing, Feng Ding, Chenghao Guo i Yabin Wang. "System load trend prediction method based on IF-EMD-LSTM". International Journal of Distributed Sensor Networks 15, nr 8 (sierpień 2019): 155014771986765. http://dx.doi.org/10.1177/1550147719867655.
Pełny tekst źródłaGuerrero-Sánchez, Alma E., Edgar A. Rivas-Araiza, Mariano Garduño-Aparicio, Saul Tovar-Arriaga, Juvenal Rodriguez-Resendiz i Manuel Toledano-Ayala. "A Novel Methodology for Classifying Electrical Disturbances Using Deep Neural Networks". Technologies 11, nr 4 (21.06.2023): 82. http://dx.doi.org/10.3390/technologies11040082.
Pełny tekst źródłaCao, Zhiyong, Zhijuan Cao, Hongwei Zhao, Jiajun Xu, Guangyong Zhang, Yi Li, Yufei Su, Ling Lou, Xiujuan Yang i Zhaobing Gu. "Using Empirical Modal Decomposition to Improve the Daily Milk Yield Prediction of Cows". Wireless Communications and Mobile Computing 2022 (11.07.2022): 1–7. http://dx.doi.org/10.1155/2022/1685841.
Pełny tekst źródłaSadrawi, Muammar, Shou-Zen Fan, Maysam F. Abbod, Kuo-Kuang Jen i Jiann-Shing Shieh. "Computational Depth of Anesthesia via Multiple Vital Signs Based on Artificial Neural Networks". BioMed Research International 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/536863.
Pełny tekst źródłaJin, Zebin, Yixiao Jin i Zhiyun Chen. "Empirical mode decomposition using deep learning model for financial market forecasting". PeerJ Computer Science 8 (14.09.2022): e1076. http://dx.doi.org/10.7717/peerj-cs.1076.
Pełny tekst źródłaRedwan, Sadi M., Md Rashed-Al-Mahfuz i Md Ekramul Hamid. "Recognizing Command Words using Deep Recurrent Neural Network for Both Acoustic and Throat Speech". European Journal of Information Technologies and Computer Science 3, nr 2 (22.05.2023): 7–13. http://dx.doi.org/10.24018/compute.2023.3.2.88.
Pełny tekst źródłaCamarena-Martinez, David, Martin Valtierra-Rodriguez, Arturo Garcia-Perez, Roque Alfredo Osornio-Rios i Rene de Jesus Romero-Troncoso. "Empirical Mode Decomposition and Neural Networks on FPGA for Fault Diagnosis in Induction Motors". Scientific World Journal 2014 (2014): 1–17. http://dx.doi.org/10.1155/2014/908140.
Pełny tekst źródłaZheng, Huiting, Jiabin Yuan i Long Chen. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation". Energies 10, nr 8 (8.08.2017): 1168. http://dx.doi.org/10.3390/en10081168.
Pełny tekst źródłaXu, Da-Chuan, Huai-Shu Hou, Cai-Xia Liu i Chao-Fei Jiao. "Defect type identification of thin-walled stainless steel seamless pipe based on eddy current testing". Insight - Non-Destructive Testing and Condition Monitoring 63, nr 12 (1.12.2021): 697–703. http://dx.doi.org/10.1784/insi.2021.63.12.697.
Pełny tekst źródłaRofii, Faqih, Agus Naba, Hari Arief Dharmawan i Fachrudin Hunaini. "Development of empirical mode decomposition based neural network for power quality disturbances classification". EUREKA: Physics and Engineering, nr 2 (31.03.2022): 28–44. http://dx.doi.org/10.21303/2461-4262.2022.002046.
Pełny tekst źródłaAltuve, Miguel, Paula Lizarazo i Javier Villamizar. "Human activity recognition using improved complete ensemble EMD with adaptive noise and long short-term memory neural networks". Biocybernetics and Biomedical Engineering 40, nr 3 (lipiec 2020): 901–9. http://dx.doi.org/10.1016/j.bbe.2020.04.007.
Pełny tekst źródłaAsghar, Muhammad Adeel, Muhammad Jamil Khan, Muhammad Rizwan, Raja Majid Mehmood i Sun-Hee Kim. "An Innovative Multi-Model Neural Network Approach for Feature Selection in Emotion Recognition Using Deep Feature Clustering". Sensors 20, nr 13 (5.07.2020): 3765. http://dx.doi.org/10.3390/s20133765.
Pełny tekst źródłaWang, Dongyu, Xiwen Cui i Dongxiao Niu. "Wind Power Forecasting Based on LSTM Improved by EMD-PCA-RF". Sustainability 14, nr 12 (15.06.2022): 7307. http://dx.doi.org/10.3390/su14127307.
Pełny tekst źródłaGao, Hongbo, Shuang Qiu, Jun Fang, Nan Ma, Jiye Wang, Kun Cheng, Hui Wang i in. "Short-Term Prediction of PV Power Based on Combined Modal Decomposition and NARX-LSTM-LightGBM". Sustainability 15, nr 10 (18.05.2023): 8266. http://dx.doi.org/10.3390/su15108266.
Pełny tekst źródłaDiez, Pablo F., Vicente A. Mut, Eric Laciar, Abel Torres i Enrique M. Avila Perona. "FEATURES EXTRACTION METHOD FOR BRAIN-MACHINE COMMUNICATION BASED ON THE EMPIRICAL MODE DECOMPOSITION". Biomedical Engineering: Applications, Basis and Communications 25, nr 06 (grudzień 2013): 1350058. http://dx.doi.org/10.4015/s1016237213500580.
Pełny tekst źródłaJaramillo-Morán, Miguel A., Daniel Fernández-Martínez, Agustín García-García i Diego Carmona-Fernández. "Improving Artificial Intelligence Forecasting Models Performance with Data Preprocessing: European Union Allowance Prices Case Study". Energies 14, nr 23 (23.11.2021): 7845. http://dx.doi.org/10.3390/en14237845.
Pełny tekst źródłaZeng, Wei, Mengqing Li, Chengzhi Yuan, Qinghui Wang, Fenglin Liu i Ying Wang. "Classification of focal and non focal EEG signals using empirical mode decomposition (EMD), phase space reconstruction (PSR) and neural networks". Artificial Intelligence Review 52, nr 1 (3.04.2019): 625–47. http://dx.doi.org/10.1007/s10462-019-09698-4.
Pełny tekst źródłaMohsenimanesh, Ahmad, Evgueniy Entchev i Filip Bosnjak. "Hybrid Model Based on an SD Selection, CEEMDAN, and Deep Learning for Short-Term Load Forecasting of an Electric Vehicle Fleet". Applied Sciences 12, nr 18 (16.09.2022): 9288. http://dx.doi.org/10.3390/app12189288.
Pełny tekst źródłaDang, Sanlei, Long Peng, Jingming Zhao, Jiajie Li i Zhengmin Kong. "A Quantile Regression Random Forest-Based Short-Term Load Probabilistic Forecasting Method". Energies 15, nr 2 (17.01.2022): 663. http://dx.doi.org/10.3390/en15020663.
Pełny tekst źródłaZhang, Yixiang, Zenggui Gao, Jiachen Sun i Lilan Liu. "Machine-Learning Algorithms for Process Condition Data-Based Inclusion Prediction in Continuous-Casting Process: A Case Study". Sensors 23, nr 15 (27.07.2023): 6719. http://dx.doi.org/10.3390/s23156719.
Pełny tekst źródła