Artykuły w czasopismach na temat „Embryonic stem cells”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Embryonic stem cells.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Embryonic stem cells”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

HOSSEINI, Hamid, i S. MOOSAVI-NEJAD. "1A34 Shock waves effects on embryonic stem cells". Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME 2014.26 (2014): 35–36. http://dx.doi.org/10.1299/jsmebio.2014.26.35.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pera, M. F., B. Reubinoff i A. Trounson. "Human embryonic stem cells". Journal of Cell Science 113, nr 1 (1.01.2000): 5–10. http://dx.doi.org/10.1242/jcs.113.1.5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Embryonic stem (ES) cells are cells derived from the early embryo that can be propagated indefinitely in the primitive undifferentiated state while remaining pluripotent; they share these properties with embryonic germ (EG) cells. Candidate ES and EG cell lines from the human blastocyst and embryonic gonad can differentiate into multiple types of somatic cell. The phenotype of the blastocyst-derived cell lines is very similar to that of monkey ES cells and pluripotent human embryonal carcinoma cells, but differs from that of mouse ES cells or the human germ-cell-derived stem cells. Although our understanding of the control of growth and differentiation of human ES cells is quite limited, it is clear that the development of these cell lines will have a widespread impact on biomedical research.
3

Challa, Stalin Reddy, i Swathi Goli. "Differentiation of Human Embryonic Stem Cells into Engrafting Myogenic Precursor Cells". Stem cell Research and Therapeutics International 1, nr 1 (16.04.2019): 01–05. http://dx.doi.org/10.31579/2643-1912/002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Degenerative muscle diseases affect muscle tissue integrity and function. Human embryonic stem cells (hESC) are an attractive source of cells to use in regenerative therapies due to their unlimited capacity to divide and ability to specialize into a wide variety of cell types. A practical way to derive therapeutic myogenic stem cells from hESC is lacking. In this study, we demonstrate the development of two serum-free conditions to direct the differentiation of hESC towards a myogenic precursor state. Using TGFß and PI3Kinase inhibitors in combination with bFGF we showed that one week of differentiation is sufficient for hESC to specialize into PAX3+/PAX7+ myogenic precursor cells. These cells also possess the capacity to further differentiate in vitro into more specialized myogenic cells that express MYOD, Myogenin, Desmin and MYHC, and showed engraftment in vivo upon transplantation in immunodeficient mice. Ex vivo myomechanical studies of dystrophic mouse hindlimb muscle showed functional improvement one month post-transplantation. In summary, this study describes a promising system to derive engrafting muscle precursor cells solely using chemical substances in serum-free conditions and without genetic manipulation.
4

Cezar, Gabriela Gebrin. "Embryonic Stem Cells". International Journal of Pharmaceutical Medicine 20, nr 2 (2006): 107–14. http://dx.doi.org/10.2165/00124363-200620020-00004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Wagner, Erwin F. "Embryonic stem cells". Current Opinion in Oncology 4 (grudzień 1992): S2—S4. http://dx.doi.org/10.1097/00001622-199212001-00002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Rippon, H. J., i A. E. Bishop. "Embryonic stem cells". Cell Proliferation 37, nr 1 (luty 2004): 23–34. http://dx.doi.org/10.1111/j.1365-2184.2004.00298.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Biswas, Atindriya, i Robert Hutchins. "Embryonic Stem Cells". Stem Cells and Development 16, nr 2 (kwiecień 2007): 213–22. http://dx.doi.org/10.1089/scd.2006.0081.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Etches, Robert J. "Embryonic stem cells". Lancet Oncology 2, nr 3 (marzec 2001): 131–32. http://dx.doi.org/10.1016/s1470-2045(00)00252-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Hampton, Tracy. "Embryonic Stem Cells". JAMA 297, nr 5 (7.02.2007): 459. http://dx.doi.org/10.1001/jama.297.5.459-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Morowitz, Harold. "Embryonic stem cells". Complexity 8, nr 3 (styczeń 2003): 10–11. http://dx.doi.org/10.1002/cplx.10080.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Bishop, Anne E., Lee D. K. Buttery i Julia M. Polak. "Embryonic stem cells". Journal of Pathology 197, nr 4 (2002): 424–29. http://dx.doi.org/10.1002/path.1154.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Pacholczyk, Tadeusz. "Rethinking Embryonic Stem Cells". Ethics & Medics 33, nr 4 (2008): 1–3. http://dx.doi.org/10.5840/em20083347.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Wilmut, I. "Human Embryonic Stem Cells". Science 310, nr 5756 (23.12.2005): 1903c. http://dx.doi.org/10.1126/science.1123832.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Daley, George Q. "Histocompatible embryonic stem cells". Cell Research 18, S1 (sierpień 2008): S2. http://dx.doi.org/10.1038/cr.2008.92.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Clements, M. "Human Embryonic Stem Cells". British Journal of Cancer 90, nr 2 (styczeń 2004): 558–59. http://dx.doi.org/10.1038/sj.bjc.6601577.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

HENRY, CELIA. "EMBRYONIC STEM CELLS' SUPPORT". Chemical & Engineering News 81, nr 42 (20.10.2003): 9. http://dx.doi.org/10.1021/cen-v081n042.p009a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Wray, Jason, i Christine Hartmann. "WNTing embryonic stem cells". Trends in Cell Biology 22, nr 3 (marzec 2012): 159–68. http://dx.doi.org/10.1016/j.tcb.2011.11.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Choong, Cleo, i Mahendra S. Rao. "Human Embryonic Stem Cells". Neurosurgery Clinics of North America 18, nr 1 (styczeń 2007): 1–14. http://dx.doi.org/10.1016/j.nec.2006.10.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Trounson, Alan, i Martin Pera. "Human embryonic stem cells". Fertility and Sterility 76, nr 4 (październik 2001): 660–61. http://dx.doi.org/10.1016/s0015-0282(01)02880-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Letso, Reka R., i Brent R. Stockwell. "Renewing embryonic stem cells". Nature 444, nr 7120 (grudzień 2006): 692–93. http://dx.doi.org/10.1038/444692b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Nichols, Jennifer. "Introducing embryonic stem cells". Current Biology 11, nr 13 (lipiec 2001): R503—R505. http://dx.doi.org/10.1016/s0960-9822(01)00304-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

West, J. A., i G. Q. Daley. "Human embryonic stem cells". Bone Marrow Transplantation 33, nr 1 (styczeń 2004): 135. http://dx.doi.org/10.1038/sj.bmt.1704315.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Gama, Vivian, i Mohanish Deshmukh. "Human embryonic stem cells". Cell Cycle 11, nr 21 (listopad 2012): 3905–6. http://dx.doi.org/10.4161/cc.22233.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Damdimopoulou, Pauliina, Sergey Rodin, Sonya Stenfelt, Liselotte Antonsson, Karl Tryggvason i Outi Hovatta. "Human embryonic stem cells". Best Practice & Research Clinical Obstetrics & Gynaecology 31 (luty 2016): 2–12. http://dx.doi.org/10.1016/j.bpobgyn.2015.08.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Bhartiya, Deepa, Sandhya Anand i Hiren Patel. "Making gametes from pluripotent stem cells: embryonic stem cells or very small embryonic-like stem cells?" Stem Cell Investigation 3 (14.10.2016): 57. http://dx.doi.org/10.21037/sci.2016.09.06.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Azab, Azab. "Stem Cells: Insights into Niche, Classification, Identification, Characterization, Mechanisms of Regeneration by Using Stem Cells, and Applications in Joint Disease Remedy". Biotechnology and Bioprocessing 2, nr 1 (1.02.2021): 01–07. http://dx.doi.org/10.31579/2766-2314/024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Background: Stem cell therapy has attracted much interest in the 21st century, not only because of the controversy surrounding the ethics involving pluripotent stem cells, but their potential for clinical use. Objectives: The present review highlights the stem cells niche, types, identification, and characterization, mechanisms of regeneration by using stem cells, and applications in joint disease remedy. Stem cells could be well differentiated cells with the potential to display different cell types depending on the host niche. Niche is defined as the cellular microenvironment providing support and stimuli to control the properties of stem cells. It consists of signaling molecules, inter-cell contacts and interaction between stem cells and their extracellular matrix neighbors. Stem cells are classified according to their sources into two main types, the embryonic and non-embryonic. Embryonic stem cells are pluripotent and can differentiate into all germ layers. Non-embryonic stem cells can be sub-classified into fetal stem cells and adult stem cells. Cultured cells can be made to differentiate into exclusive lineages by providing selective media components that can be identified by histochemical staining and quantified by quantitative Real-time polymerase chain reaction. Mesenchymal stem cells (MSCs) can be identified based on the expression of specific proteins called surface antigen phenotype of mesenchymal stem cell markers. MSCs secrete a variety of interleukins, several neurotrophic factors, many cytokines, and growth factors. These secreted bioactive factors have both paracrine and autocrine effects, which are anti-fibrotic and anti-apoptotic, as well as enhance angiogenesis. Furthermore, they stimulate mitosis and differentiation of tissue-intrinsic reparative stem cells. Systemic MSC transplantation can engraft to an injured tissue and promote wound healing through differentiation, and proliferation in synergy with hematopoietic stem cells. MSCs have been shown to express a variety of chemokines and chemokine receptors and can home to sites of inflammation by migrating towards injury or inflammatory chemokines and cytokines. MSCs are proven to have immunomodulatory properties that are among the most intriguing aspects of their biology. The immunosuppressive properties of MSCs inhibit the immune response of naive and memory T cells in a mixed lymphocyte culture and induce mitogen. The systemic infusion of MSCs can be used in immunosuppressive therapy of various disorders. MSCs have become an alternative source of cells that can be drawn from several these cells have been used as treatment to repair cartilage defects at early stages sources. Using the MSCs and directing them into chondrogenic differentiation might lead to the formation of higher quality cartilage, which has a great composition of hyaline, adequate structural reorganization and therefore improved biomechanical properties. Conclusion: It can be concluded that stem cells are classified according to their sources into two main types, the embryonic and non-embryonic. Embryonic stem cells are pluripotent and can differentiate into all germ layers. Non-embryonic stem cells can be sub-classified into fetal stem cells and adult stem cells. MSCs secrete bioactive factors that are anti-fibrotic and anti-apoptotic, as well as enhance angiogenesis. The systemic infusion of MSCs can be used in immunosuppressive therapy of various disorders. These cells have been used as treatment to repair cartilage defects at early stages.
27

Sharma, Dinesh Kumar. "Comparative Study of Human Embryonic and Adult Stem Cells: A Review". Indian Journal of Genetics and Molecular Research 8, nr 1 (2019): 27–34. http://dx.doi.org/10.21088/ijgmr.2319.4782.8119.4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Dani, C., A. G. Smith, S. Dessolin, P. Leroy, L. Staccini, P. Villageois, C. Darimont i G. Ailhaud. "Differentiation of embryonic stem cells into adipocytes in vitro". Journal of Cell Science 110, nr 11 (1.06.1997): 1279–85. http://dx.doi.org/10.1242/jcs.110.11.1279.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Embryonic stem cells, derived from the inner cell mass of murine blastocysts, can be maintained in a totipotent state in vitro. In appropriate conditions embryonic stem cells have been shown to differentiate in vitro into various derivatives of all three primary germ layers. We describe in this paper conditions to induce differentiation of embryonic stem cells reliably and at high efficiency into adipocytes. A prerequisite is to treat early developing embryonic stem cell-derived embryoid bodies with retinoic acid for a precise period of time. Retinoic acid could not be substituted by adipogenic hormones nor by potent activators of peroxisome proliferator-activated receptors. Treatment with retinoic acid resulted in the subsequent appearance of large clusters of mature adipocytes in embryoid body outgrowths. Lipogenic and lipolytic activities as well as high level expression of adipocyte specific genes could be detected in these cultures. Analysis of expression of potential adipogenic genes, such as peroxisome proliferator-activated receptors gamma and delta and CCAAT/enhancer binding protein beta, during differentiation of retinoic acid-treated embryoid bodies has been performed. The temporal pattern of expression of genes encoding these nuclear factors resembled that found during mouse embryogenesis. The differentiation of embryonic stem cells into adipocytes will provide an invaluable model for the characterisation of the role of genes expressed during the adipocyte development programme and for the identification of new adipogenic regulatory genes.
29

Koestenbauer, Sonja, Nicolas H. Zech, Herbert Juch, Pierre Vanderzwalmen, Luc Schoonjans i Gottfried Dohr. "Embryonic Stem Cells: Similarities and Differences Between Human and Murine Embryonic Stem Cells". American Journal of Reproductive Immunology 55, nr 3 (marzec 2006): 169–80. http://dx.doi.org/10.1111/j.1600-0897.2005.00354.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Zhang, Yue Shelby, Ana Sevilla, Leo Q. Wan, Ihor R. Lemischka i Gordana Vunjak-Novakovic. "Patterning pluripotency in embryonic stem cells". STEM CELLS 31, nr 9 (wrzesień 2013): 1806–15. http://dx.doi.org/10.1002/stem.1468.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Nagy, Andras, Marina Gertsenstein, Kristina Vintersten i Richard Behringer. "Differentiating Embryonic Stem (ES) Cells into Embryoid Bodies". Cold Spring Harbor Protocols 2006, nr 2 (lipiec 2006): pdb.prot4405. http://dx.doi.org/10.1101/pdb.prot4405.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Liu, De Wu, Yong Tie Li, De Ming Liu i Pu Ning. "Culture and Characteristics of Human Induced Pluripotent Stem Cells". Advanced Materials Research 268-270 (lipiec 2011): 835–37. http://dx.doi.org/10.4028/www.scientific.net/amr.268-270.835.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Human induced pluripotent stem cells is promising for regenerative medicine and tissue engineering. In this chapter, we focus on the culture and characteristics of human induced pluripotent stem cells. The induced pluripotent stem cells were plated on murine embryonic fibroblast feeder cells and expanded in human embryonic stem cells media contained basic fibroblast growth factor. The cells were passaged by collagenase IV digestion method and observed under invert microscope. The expression of alkaline phosphatase was detected by immunocytochemistry. The cultured induced pluripotent stem cells grew well and stability with similar characteristics of human embryonic stem cells. These cells also expressed alkaline phosphatase. They formed embryoid body in feeder-free and suspension culture conditions. The results provide an experimental basis for improvement of induction study and further application to generate patient-specific induced pluripotent stem cells.
33

Wang, Yuan, Frank Yates, Eugenia Dikovskaia, Patricia Ernst, Alan J. Davidson, Leonard I. Zon i George Q. Daley. "Derivation of Hematopoietic Stem Cells from Embryonic Stem Cells." Blood 104, nr 11 (16.11.2004): 223. http://dx.doi.org/10.1182/blood.v104.11.223.223.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Abstract Despite the significant in vitro blood-forming potential of murine embryonic stem cells (ESCs), deriving hematopoietic stem cells (HSCs) that can reconstitute irradiated mice has proven to be challenging. Previously, we successfully engrafted lethally irradiated adult mice with ESCs engineered to ectopically express the homeodomain gene hoxB4. In engrafted animals, blood reconstitution showed a myeloid predominance, likely due to an inability to fully pattern the adult HSC from these embryonic populations. Recently, we have investigated cdx4, a caudal-related homeobox gene whose function has been linked to blood development in the zebrafish. During in vitro differentiation of murine ESCs, cdx4 is expressed during a very narrow time interval on day 3, coincident with the specification of hematopoietic mesoderm. To further characterize the function of cdx4 in mouse hematopoiesis, we have established a tetracycline-inducible murine embryonic stem cell line. When cdx4 expression is conditionally induced over a protracted period from day 2 and 6, we observe a marked enhancement of hemangioblast formation as well as significant increases in primitive and definitive hematopoietic colonies. Cdx4 acts to induce a broad array of hox genes, including a modest elevation in hoxb4. Co-expression of cdx4 and hoxb4 promotes robust expansion of hematopoietic blasts on supportive OP9 stromal cultures. When injected intravenously into lethally-irradiated mice, these cell populations provide robust radio-protection, and reconstitute high-level lymphoid-myeloid donor chimerism. Marrow from engrafted primary animals can be transplanted into irradiated secondary mice. B220+ splenic lymphoid cells and Mac-1/Gr-1+ marrow myeloid cells purified from primary and secondary mice show multiple common sites of retroviral integration, thereby proving the derivation of long-term hematopoietic stem cells from embryonic stem cells in vitro. Our data support a central role for the cdx4-hox gene pathway in specifying murine HSC development, and establish a robust system for hematopoietic reconstitution from ESCs. We have coupled techniques for generating ESCs by nuclear transfer with these methods for blood reconstitution to model the treatment of genetic disorders of the bone marrow.
34

Larrú, M. "Adult stem cells: an alternative to embryonic stem cells?" Trends in Biotechnology 19, nr 12 (1.12.2001): 487. http://dx.doi.org/10.1016/s0167-7799(01)01867-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

LENGERKE, C., i G. DALEY. "Patterning definitive hematopoietic stem cells from embryonic stem cells". Experimental Hematology 33, nr 9 (wrzesień 2005): 971–79. http://dx.doi.org/10.1016/j.exphem.2005.06.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Zerhouni, E. "EMBRYONIC STEM CELLS: Enhanced: Stem Cell Programs". Science 300, nr 5621 (9.05.2003): 911–12. http://dx.doi.org/10.1126/science.1084819.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Wang, Y., F. Yates, O. Naveiras, P. Ernst i G. Q. Daley. "Embryonic stem cell-derived hematopoietic stem cells". Proceedings of the National Academy of Sciences 102, nr 52 (15.12.2005): 19081–86. http://dx.doi.org/10.1073/pnas.0506127102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Chen, Yifei, i Dongmei Lai. "Pluripotent States of Human Embryonic Stem Cells". Cellular Reprogramming 17, nr 1 (luty 2015): 1–6. http://dx.doi.org/10.1089/cell.2014.0061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Koch, Cody A., Pedro Geraldes i Jeffrey L. Platt. "Immunosuppression by Embryonic Stem Cells". Stem Cells 26, nr 1 (styczeń 2008): 89–98. http://dx.doi.org/10.1634/stemcells.2007-0151.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Calabrese, Edward J. "Hormesis and embryonic stem cells". Chemico-Biological Interactions 352 (styczeń 2022): 109783. http://dx.doi.org/10.1016/j.cbi.2021.109783.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Tonti-Filippini, Nicholas, i Peter McCullagh. "Embryonic Stem Cells and Totipotency". Ethics & Medics 25, nr 7 (2000): 1–3. http://dx.doi.org/10.5840/em200025713.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Travis, J. "Human Embryonic Stem Cells Found?" Science News 152, nr 3 (19.07.1997): 36. http://dx.doi.org/10.2307/3980870.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Daley, George Q. "Customized human embryonic stem cells". Nature Biotechnology 23, nr 7 (lipiec 2005): 826–28. http://dx.doi.org/10.1038/nbt0705-826.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Borge, Ole. "Embryonic and Adult Stem Cells". Acta Veterinaria Scandinavica 45, Suppl 1 (2004): S39. http://dx.doi.org/10.1186/1751-0147-45-s1-s39.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Redi, Carlo Alberto. "Human embryonic stem cells handbook". European Journal of Histochemistry 57, nr 1 (12.03.2013): 2. http://dx.doi.org/10.4081/ejh.2013.br2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Roccanova, L., P. Ramphal, P. R. III;, C. B. Harley, J. S. Lebkowski, M. K. Carpenter i T. B. Okarma. "Mutation in Embryonic Stem Cells". Science 292, nr 5516 (20.04.2001): 438b—440. http://dx.doi.org/10.1126/science.292.5516.438b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Grompe, Markus. "Embryonic stem cells without embryos?" Nature Biotechnology 23, nr 12 (grudzień 2005): 1496–97. http://dx.doi.org/10.1038/nbt1205-1496.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Kazemirad, Nastaran, i Nahid Lorzadeh. "Embryonic Stem Cells and Infertility". American Journal of Perinatology 35, nr 10 (28.02.2018): 925–30. http://dx.doi.org/10.1055/s-0038-1632367.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
AbstractEmbryonic stem cells (ESCs) have the ability to differentiate into several cell lineages and self-renew. Through a spontaneous process, ESCs can differentiate into germ cells of various stages, partly due to their self-renewal ability and their microenvironment culture. Human and mouse ESC differentiation into putative primordial germ cells (PGCs) has been demonstrated by several studies; in fact, derivation of functional mouse male gametes has also been reported. However, the exact underlying mechanisms are yet to be understood properly, and as such clinical applications of ESC-derived PGC remains controversial. Nonetheless, this technique can still serve as a potential treatment option for infertility. This review centers on the available reports on the possible application of ESC for infertility treatment.
49

AGAR, NICHOLAS. "EMBRYONIC POTENTIAL AND STEM CELLS". Bioethics 21, nr 4 (maj 2007): 198–207. http://dx.doi.org/10.1111/j.1467-8519.2006.00533.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Ding, Li, i Frank Buchholz. "RNAi in Embryonic Stem Cells". Stem Cell Reviews 2, nr 1 (2006): 11–18. http://dx.doi.org/10.1385/scr:2:1:11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Do bibliografii