Gotowa bibliografia na temat „Elevated temperature”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Elevated temperature”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Elevated temperature"

1

Hofmeister, Anne M., i Maik Pertermann. "Thermal diffusivity of clinopyroxenes at elevated temperature". European Journal of Mineralogy 20, nr 4 (29.08.2008): 537–49. http://dx.doi.org/10.1127/0935-1221/2008/0020-1814.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

sinha, Dr Deepa A. "Flexural Behavior of TBsFrc subjected to sustained Elevated Temperature". Indian Journal of Applied Research 4, nr 7 (1.10.2011): 221–25. http://dx.doi.org/10.15373/2249555x/july2014/68.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Rajaram, M., S. Kandasamy, A. Ravichandran i A. Muthadhi. "Effect of Polystyrene Waste on Concrete at Elevated Temperature". Indian Journal Of Science And Technology 15, nr 38 (15.10.2022): 1912–22. http://dx.doi.org/10.17485/ijst/v15i38.225.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Wheeler, J. M., P. Brodard i J. Michler. "Elevated temperature,in situindentation with calibrated contact temperatures". Philosophical Magazine 92, nr 25-27 (wrzesień 2012): 3128–41. http://dx.doi.org/10.1080/14786435.2012.674647.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Hancox, N. L. "Elevated temperature polymer composites". Materials & Design 12, nr 6 (grudzień 1991): 317–21. http://dx.doi.org/10.1016/0261-3069(91)90072-c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Le, Quang X., Vinh TN Dao, Jose L. Torero, Cristian Maluk i Luke Bisby. "Effects of temperature and temperature gradient on concrete performance at elevated temperatures". Advances in Structural Engineering 21, nr 8 (8.12.2017): 1223–33. http://dx.doi.org/10.1177/1369433217746347.

Pełny tekst źródła
Streszczenie:
To assure adequate fire performance of concrete structures, appropriate knowledge of and models for performance of concrete at elevated temperatures are crucial yet currently lacking, prompting further research. This article first highlights the limitations of inconsistent thermal boundary conditions in conventional fire testing and of using constitutive models developed based on empirical data obtained through testing concrete under minimised temperature gradients in modelling of concrete structures with significant temperature gradients. On that basis, this article outlines key features of a new test setup using radiant panels to ensure well-defined and reproducible thermal and mechanical loadings on concrete specimens. The good repeatability, consistency and uniformity of the thermal boundary conditions are demonstrated using measurements of heat flux and in-depth temperature of test specimens. The initial collected data appear to indicate that the compressive strength and failure mode of test specimens are influenced by both temperature and temperature gradient. More research is thus required to further quantify such effect and also to effectively account for it in rational performance-based fire design and analysis of concrete structures. The new test setup reported in this article, which enables reliable thermal/mechanical loadings and deformation capturing of concrete surface at elevated temperatures using digital image correlation, would be highly beneficial for such further research.
Style APA, Harvard, Vancouver, ISO itp.
7

Choi, S. R., i J. P. Gyekenyesi. "Elevated-Temperature “Ultra” Fast Fracture Strength of Advanced Ceramics: An Approach to Elevated-Temperature “Inert” Strength". Journal of Engineering for Gas Turbines and Power 121, nr 1 (1.01.1999): 18–24. http://dx.doi.org/10.1115/1.2816306.

Pełny tekst źródła
Streszczenie:
The determination of “ultra” fast fracture strengths of five silicon nitride ceramics at elevated temperatures has been made by using constant stress-rate (“dynamic fatigue”) testing with a series of “ultra” fast test rates. The test materials included four monolithic and one SiC whisker-reinforced composite silicon nitrides. Of the five test materials, four silicon nitrides exhibited the elevated-temperature strengths that approached their respective room-temperature strengths at an “ultra” fast test rate of 3.3 × 104 MPa/s. This implies that slow crack growth responsible for elevated-temperature failure can be eliminated or minimized by using the “ultra” fast test rate. These ongoing experimental results have shed light on laying a theoretical and practical foundation on the concept and definition of elevated-temperature “inert” strength behavior of advanced ceramics.
Style APA, Harvard, Vancouver, ISO itp.
8

Wang, X. W., M. Zhao, Z. J. Mao, S. Y. Zhu, D. L. Zhang i X. Z. Zhao. "Combination of elevated CO2 concentration and elevated temperature and elevated temperature only promote photosynthesis of Quercus mongolica seedlings". Russian Journal of Plant Physiology 55, nr 1 (styczeń 2008): 54–58. http://dx.doi.org/10.1134/s1021443708010068.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

ISAAC, JOHNEY, SHEENU THOMAS i J. PHILIP. "General-purpose high performance temperature controller for elevated temperatures". International Journal of Electronics 74, nr 6 (czerwiec 1993): 979–82. http://dx.doi.org/10.1080/00207219308925900.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Daniels, Katherine, Jon Harrington, Stephanie Zihms i Andrew Wiseall. "Bentonite Permeability at Elevated Temperature". Geosciences 7, nr 1 (11.01.2017): 3. http://dx.doi.org/10.3390/geosciences7010003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Elevated temperature"

1

Cigas, Saulius. "Standaus apkrovimo ciklinių deformavimo parametrų nustatymas korozijai ir karščiui atsparaus plieno suvirintųjų sujungimų medžiagoms". Master's thesis, Lithuanian Academic Libraries Network (LABT), 2005. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2005~D_20050613_152519-67955.

Pełny tekst źródła
Streszczenie:
Cigas S. Determination of low cycle straining parameters for weld metals of stainless steel: Master thesis of mechanical engineer / research advisor associate professor dr. R. Šniuolis; Šiauliai University, Technological Faculty, Mechanical Engineering Department.–Šiauliai, 2005.-68p. Strain and stress change during the exploitation depend on the type of material (hardening, softening or cyclically stabile), that is chosen for the constructions in low cycle loading. If we know the type of the material, we can determine the possibility of its application in concrete exploitation conditions. Real working conditions of the most constructions are close to loading with limited strain (hard straining), because elastic and plastic deformation is met in the zones of crack and stress concentration, that are surrounded with elastically deformed material. Analytical dependences between stress and strain in any semicycle k are expressed by summarized low cyclic stress strain curve. The low cycle loading curves parameters A, and are used for the computation of this curve. These parameters were obtained from the low cycle straining results. The other possible ways for the determination of parameters A, , and statistical methods for the evaluation of these parameters for weld metals of stainless steel at room temperature are presented in this work. Cyclic characteristics A, and were determined by methods shown in this work. It was determined, that the values of cyclic strain and... [to full text]
Style APA, Harvard, Vancouver, ISO itp.
2

Karademir, Tanay. "Elevated temperature effects on interface shear behavior". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42764.

Pełny tekst źródła
Streszczenie:
Environmental conditions such as temperature inevitably impact the long term performance, strength and deformation characteristics of most materials in infrastructure applications. The mechanical and durability properties of geosynthetic materials are strongly temperature dependent. The interfaces between geotextiles and geomembranes as well as between granular materials such as sands and geomembranes in landfill applications are subject to temperature changes due to seasonal temperature variations as well as exothermic reactions occurring in the waste body. This can be a critical factor governing the stability of modern waste containment lining systems. Historically, most laboratory geosynthetic interface testing has been performed at room temperature. Information today is emerging that shows how temperatures in the liner systems of landfills can be much higher. An extensive research study was undertaken in an effort to investigate temperature effects on interface shear behavior between (a) NPNW polypropylene geotextiles and both smooth PVC as well as smooth and textured HDPE geomembranes and (b) sands of different angularity and smooth PVC and HDPE geomembranes. A temperature controlled chamber was designed and developed to simulate elevated temperature field conditions and shear displacement-failure mechanisms at these higher temperatures. The physical laboratory testing program consisted of multiple series of interface shear tests between material combinations found in landfill applications under a range of normal stress levels from 10 to 400 kPa and at a range of test temperatures from 20 to 50 °C. Complementary geotextile single filament tensile tests were performed at different temperatures using a dynamic thermo-mechanical analyzer (DMA) to evaluate tensile strength properties of geotextile single filaments at elevated temperatures. The single filament studies are important since the interface strength between geotextiles and geomembranes is controlled by the fabric global matrix properties as well as the micro-scale characteristics of the geotextile and how it interacts with the geomembrane macro-topography. The peak interface strength for sand-geomembrane as well as geotextile-geomembrane interfaces depends on the geomembrane properties such as hardness and micro texture. To this end, the surface hardness of smooth HDPE and PVC geomembrane samples was measured at different temperatures in the temperature controlled chamber to evaluate how temperature changes affect the interface shear behavior and strength of geomembranes in combination with granular materials and/or geotextiles. The focus of this portion of the experimental work was to examine: i) the change in geomembrane hardness with temperature; ii) develop empirical relationships to predict shear strength properties of sand - geomembrane interfaces as a function of temperature; and iii) compare the results of empirically predicted frictional shear strength properties with the results of direct measurements from the interface shear tests performed at different elevated temperatures.
Style APA, Harvard, Vancouver, ISO itp.
3

borgonovo, cecilia. "Aluminum Nano-composites for Elevated Temperature Applications". Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-theses/962.

Pełny tekst źródła
Streszczenie:
"Conventional manufacturing methods are sub-optimal for nano-composites fabrication. Inhomogeneous dispersion of the secondary phase and scalability issues are the main issues. This work focuses on an innovative method where the reinforcement is formed in-situ in the melt. It involves the reaction of the molten aluminum with a nitrogen- bearing gas injected through the melt at around 1273 K. AlN particles are expected to form through this in situ reaction. A model has been developed to predict the amount of reinforced phase. Experiments have been carried out to confirm the feasibility of the process and the mechanism of AlN formation discussed. The detrimental effect of oxygen in the melt which hinders the nitridation reaction has been proved. The effect of process times and the addition of alloying elements (Mg and Si) have also been investigated."
Style APA, Harvard, Vancouver, ISO itp.
4

Lind, Jonna. "Tribology of polymer composites for elevated temperature applications". Licentiate thesis, Uppsala universitet, Tillämpad materialvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-332985.

Pełny tekst źródła
Streszczenie:
Polymers as construction material are common in the industry. Although more recently the use of polymer composites in more demanding applications has increased, requiring more of them mechanically, tribologically and thermally. To enhance the properties various fillers are used, from common glass fibers to more advanced nanoparticles. For this study three types of base polymers have been studied: poly-amide (PA), poly-phenylene-sulphide (PPS) and poly-ether-ether-ketone (PEEK). They have been filled with glass fibers, carbon fibers, poly-tetra-fluoro-ethylene (PTFE), graphite and thermally conductive modifier in various combinations. Fibers are used to increase the mechanical properties, PTFE and graphite are added as lubricating additives to reduce the friction, and the thermally conductive modifier to increase the thermal conductivity. Five general groups of polymer composites were studied. Pure PEEK PPS, PA and PEEK filled with fibers PPS, PA and PEEK filled with fibers and lubricating additives PA filled with lubricating additives PEEK filled with fibers and additives for lubrication and thermal conductivity The polymer composites have been tribologically tested in a reciprocating sliding test set-up. Friction, wear and surface damage have been studied. Three types of counter surfaces have been used: ball bearing steel balls, stainless steel cylinders and anodized aluminum cylinders. Load, surface temperature of the polymer composites and number of cycles were varied to study any changes in friction and wear. The wear marks on the polymer composites were studied using an SEM. Cross sections of some tested samples were prepared to study any subsurface damage. From the tests the polymer composites showed similarities in friction. Lubricating additives gave lower friction, often around 0.05-0.15, while pure and only reinforced gave higher, often around 0.4-0.5. The wear was also less for polymer composites with lubricating additives. There was no clear influence of temperature but for most tests an increase in temperature gave lower friction. The only influence of load was that higher load gave wider wear tracks. Since no cross sections were prepared to compare subsurface damage due to different loads there might be a possibility that there were some differences below the surface as well. Otherwise cross sections showed that polymer composites with only fibers had cracks and cracked fibers below the surface due to the high stresses the polymer composite had been subjected to. With lubricating additives there was no large subsurface damage and it seems as if the lubricating additives formed a protective tribofilm in the wear track, giving both lower friction and wear. The presence of such a tribofilm was confirmed by XPS analysis that showed a surface layer containing F from PTFE. The conclusions are that the tribological properties of a polymer composite are strongly dependent on its fillers. Lubricating additives form a tribofilm that lowers friction and wear. Elevated temperatures might drastically change the tribological behavior of a polymer composite why it is important to do tests at higher temperatures. Cross sections can give information about subsurface damage and might help to understand the wear mechanisms and deformation of polymer composites better. More microscopy and mechanism studies are required in order to further understand the tribological behavior of polymer composites.
Style APA, Harvard, Vancouver, ISO itp.
5

Yang, Kwan-Ho. "Development of impact testing procedure at elevated temperature /". Thesis, Connect to this title online; UW restricted, 1988. http://hdl.handle.net/1773/7038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Cretegny, Laurent. "Fracture toughness behavior of weldments at elevated temperature". Thesis, Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/19957.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Przydatek, Jan. "The elevated temperature deformation of aluminium alloy 2650". Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287577.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Tsembelis, Kostantinos. "Elevated temperature measurements during a hypervelocity impact process". Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285978.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Zhu, Cuiru. "Elevated temperature liquid chromatography and peak shape analysis". Thesis, University of York, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413172.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Renshaw, Matthew Peter. "Magnetic resonance studies at elevated temperature and pressure". Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709303.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Elevated temperature"

1

Dahotre, Narendra B., Janet M. Hampikian i John E. Morral, red. Elevated Temperature Coatings. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2001. http://dx.doi.org/10.1002/9781118787694.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Orange, Thomas W. Elevated temperature crack propagation. [Washington, DC: National Aeronautics and Space Administration, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

United States. National Aeronautics and Space Administration, red. Elevated temperature biaxial fatigue. [Washington, DC]: National Aeronautics and Space Administration, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Orange, Thomas W. Elevated temperature crack propogation. [Washington, DC: National Aeronautics and Space Administration, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

H, Van Stone R., i United States. National Aeronautics and Space Administration., red. Elevated temperature crack growth: Final report. [Washington, DC]: National Aeronautics and Space Administration, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

N, Malik S., i United States. National Aeronautics and Space Administration, red. Elevated temperature crack growth: Annual report. Cincinnati, Ohio: General Electric, Aircraft Engine Business Group, Advanced Technology Programs Dept., 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

1947-, Yau Jen-Fu, i United States. National Aeronautics and Space Administration, red. Elevated temperature crack growth: Annual report. Cincinnati, Ohio: General Electric, Aircraft Engine Business Group, Advanced Technology Programs Dept., 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Piascik, RS, RP Gangloff i A. Saxena, red. Elevated Temperature Effects on Fatigue and Fracture. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1997. http://dx.doi.org/10.1520/stp1297-eb.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Healy, Joseph Cornelius. Short fatigue crack growth at elevated temperature. Birmingham: Universityof Birmingham, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

C, Watkins J., Nitzel M. E i U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering Technology., red. Performance of MOV stem lubricants at elevated temperature. Washington, DC: Division of Engineering Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Elevated temperature"

1

Stiger, M. J., R. Handoko, J. L. Beuth, F. S. Pettit i G. H. Meier. "Accelerated Durability Testing of Coatings for Gas Turbines". W Elevated Temperature Coatings, 1–14. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787694.ch1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Wu, Kaisheng, Yunzhi Wang i John E. Morral. "Predicting Interdiffusion Microstructures using the Phase Field Approach". W Elevated Temperature Coatings, 133–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787694.ch10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kim, G. Y., J. D. Meyer, L. M. He, W. Y. Lee i J. A. Haynes. "Synthesis of Hf-Doped CVD β-NiAl Coating by Continuous Doping Procedure". W Elevated Temperature Coatings, 143–57. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787694.ch11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Sohn, Y. H., i M. A. Dayananda. "A New Analysis for the Determination of Ternary Interdiffusion Coefficients for Ni-Cr-Al and Fe-Ni-Al Alloys". W Elevated Temperature Coatings, 159–70. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787694.ch12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ranganathan, Rajesh, Olga Vayena, Teiichi Ando, Charalabos C. Doumanidis i Craig A. Blue. "In-Situ Processing of Nickel Aluminide Coatings on Steel Substrates". W Elevated Temperature Coatings, 171–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787694.ch13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Bird, R. Keith, Terryl A. Wallace i Sankara N. Sankaran. "Development of Protective Coatings for High-Temperature Metallic Materials". W Elevated Temperature Coatings, 181–96. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787694.ch14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Fernandes, Stela M. C., i Lalgudi V. Ramanathan. "Rare Earth Oxide Coatings for Life Extension of Chromia Forming Alloys". W Elevated Temperature Coatings, 197–207. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787694.ch15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Seal, Sudipta, Leyda A. Bracho, Vimal Desai i Kirk Scammon. "High Temperature Surface Oxidation Chemistry of IN-738LC". W Elevated Temperature Coatings, 209–18. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787694.ch16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Dahotre, Narendra B., i Lalitha R. Katipelli. "Oxidation Kinetics and Morphology of Laser Surface Engineered Hard Coating on Aluminum". W Elevated Temperature Coatings, 219–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787694.ch17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sobczak, Natalia, i Rajiv Asthana. "The Influence of Metallic Coatings on the Structure, Wetting, and Mechanical Strength of Ceramic/Metal Interfaces". W Elevated Temperature Coatings, 233–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787694.ch18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Elevated temperature"

1

Luettich, Scott M., i Nicholas Yafrate. "Measuring Temperatures in an Elevated Temperature Landfill". W Geo-Chicago 2016. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784480144.017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Becht, Charles. "Elevated Temperature Shakedown Concepts". W ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-78067.

Pełny tekst źródła
Streszczenie:
This paper is the first part of a two part paper. It describes concepts of shakedown at elevated temperatures that form the foundation for proposed rules described in the second paper for extension of fatigue design rules in Section VIII, Div 2 slightly into the creep range.
Style APA, Harvard, Vancouver, ISO itp.
3

LINDBERG, LAURA. "Elevated temperature durability of ceramic materials". W 24th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-3055.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Khire, Milind V., Terry Johnson i Richard Holt. "Geothermal Modeling of Elevated Temperature Landfills". W Geo-Congress 2020. Reston, VA: American Society of Civil Engineers, 2020. http://dx.doi.org/10.1061/9780784482803.045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Choi, Sung R., i John P. Gyekenyesi. "Elevated-Temperature, ‘Ultra’-Fast Fracture Strength of Advanced Ceramics: An Approach to Elevated-Temperature “Inert” Strength". W ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-479.

Pełny tekst źródła
Streszczenie:
The determination of ‘ultra’-fast fracture strengths of five silicon nitride ceramics at elevated temperatures has been made by using constant stress-rate (“dynamic fatigue”) testing with a series of ‘ultra’-fast test rates. The test materials included four monolithic and one SiC whisker-reinforced composite silicon nitrides. Of the five test materials, four silicon nitrides exhibited the elevated-temperature strengths that approached their respective room-temperature strengths at an ‘ultra’-fast test rate of 33 × 104 MPa/s. This implies that slow crack growth responsible for elevated-temperature failure can be eliminated or minimized by using the ‘ultra’-fast test rate. These ongoing experimental results have shed light on laying a theoretical and practical foundation on the concept and definition of elevated-temperature “inert” strength behavior of advanced ceramics.
Style APA, Harvard, Vancouver, ISO itp.
6

St-Georges, L., L. I. Kiss i E. de Varennes. "Determination of Contact Condition at Elevated Temperature". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12794.

Pełny tekst źródła
Streszczenie:
To model complex structure with numerous components and solids, the condition of contact between two solids must be adequately described. In this investigation, a special apparatus developed to analyze the condition of contact between two solids is presented. With this apparatus, experimental tests can be performed to determine the condition of friction (static and dynamic and the transition from one to the other) and the thermal and electrical contact resistances between two disk shaped rotating samples of different nature at various temperatures (from ambient up to 1000°C) and contact pressures. To determine the evolution of the friction mechanism as a function of the relative displacement between the solids, an inverse mathematical method has been developed and is presented. The results obtained with the apparatus proposed will provide a better understanding of the contact condition and could be easily incorporated in future mathematical models describing the behaviour of complex, multi layered structures.
Style APA, Harvard, Vancouver, ISO itp.
7

Lo, Jason, i Raul Santos. "Magnesium Matrix Composites for Elevated Temperature Applications". W SAE World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-01-1028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Scarborough, Stephen, David Cadogan, Lauren Pederson, Joseph Blandino, Gary Steckel i Wayne Stuckey. "Elevated Temperature Mechanical Characterization of Isogrid Booms". W 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-1824.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Hu, Guanyu, Mohammed Ali Morovat, Jinwoo Lee, Eric Schell i Michael Engelhardt. "Elevated Temperature Properties of ASTM A992 Steel". W Structures Congress 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41031(341)118.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Chakravarty, Aditya, Ali Tinni, Chandra S. Rai i Carl H. Sondergeld. "NMR Considerations in Shales at Elevated Temperature". W Unconventional Resources Technology Conference. Tulsa, OK, USA: American Association of Petroleum Geologists, 2018. http://dx.doi.org/10.15530/urtec-2018-2902883.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Elevated temperature"

1

Cook, R., i J. Gunther. OXIDATION OF BE AT ELEVATED TEMPERATURE. Office of Scientific and Technical Information (OSTI), wrzesień 2004. http://dx.doi.org/10.2172/15014802.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Field, B. A., i R. J. Fields. Elevated temperature deformation of structural steel. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.88-3899.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Grant, P. R., R. S. Gruber i C. Van Katwijk. Elevated temperature effects on concrete properties. Office of Scientific and Technical Information (OSTI), sierpień 1993. http://dx.doi.org/10.2172/10186573.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

White, K. W. Process Zone Modeling of Elevated Temperature Structural Ceramics. Fort Belvoir, VA: Defense Technical Information Center, marzec 1997. http://dx.doi.org/10.21236/ada330361.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Braski, D. N., J. R. Gibson, L. J. Turner i R. L. Sy. High vacuum chamber for elevated-temperature tensile testing. Office of Scientific and Technical Information (OSTI), maj 1988. http://dx.doi.org/10.2172/7020133.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Abeln, S. P., R. Field i M. C. Mataya. Elevated temperature stress strain behavior of beryllium powder product. Office of Scientific and Technical Information (OSTI), wrzesień 1995. http://dx.doi.org/10.2172/113965.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Vogel, Sven C. Elevated and Low Temperature Deformation of Cast Depleted Uranium. Office of Scientific and Technical Information (OSTI), luty 2015. http://dx.doi.org/10.2172/1170623.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Schulthess, Jason. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils. Office of Scientific and Technical Information (OSTI), wrzesień 2014. http://dx.doi.org/10.2172/1183495.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Schulthess, Jason. Elevated temperature tensile tests on DU-10Mo rolled foils. Office of Scientific and Technical Information (OSTI), maj 2018. http://dx.doi.org/10.2172/1466662.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Saxena, A., i S. R. Stock. Mechanisms of time-dependent crack growth at elevated temperature. Office of Scientific and Technical Information (OSTI), kwiecień 1990. http://dx.doi.org/10.2172/6633270.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii