Artykuły w czasopismach na temat „Electrophoresis microchip devices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Electrophoresis microchip devices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Munro, Nicole J., Karen Snow, Jeffrey A. Kant i James P. Landers. "Molecular Diagnostics on Microfabricated Electrophoretic Devices: From Slab Gel- to Capillary- to Microchip-based Assays for T- and B-Cell Lymphoproliferative Disorders". Clinical Chemistry 45, nr 11 (1.11.1999): 1906–17. http://dx.doi.org/10.1093/clinchem/45.11.1906.
Pełny tekst źródłaHa, Ji Won. "Acupuncture Injection Combined with Electrokinetic Injection for Polydimethylsiloxane Microfluidic Devices". Journal of Analytical Methods in Chemistry 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/7495348.
Pełny tekst źródłaFister, Julius C., Stephen C. Jacobson i J. Michael Ramsey. "Ultrasensitive Cross-Correlation Electrophoresis on Microchip Devices". Analytical Chemistry 71, nr 20 (październik 1999): 4460–64. http://dx.doi.org/10.1021/ac990853d.
Pełny tekst źródłaChen, Yu-Hung, Wei-Chang Wang, Kung-Chia Young, Ting-Tsung Chang i Shu-Hui Chen. "Plastic Microchip Electrophoresis for Analysis of PCR Products of Hepatitis C Virus". Clinical Chemistry 45, nr 11 (1.11.1999): 1938–43. http://dx.doi.org/10.1093/clinchem/45.11.1938.
Pełny tekst źródłaRodríguez, Isabel, Lian Ji Jin i Sam F. Y. Li. "High-speed chiral separations on microchip electrophoresis devices". Electrophoresis 21, nr 1 (1.01.2000): 211–19. http://dx.doi.org/10.1002/(sici)1522-2683(20000101)21:1<211::aid-elps211>3.0.co;2-d.
Pełny tekst źródłaKumar, Suresh, Vishal Sahore, Chad I. Rogers i Adam T. Woolley. "Development of an integrated microfluidic solid-phase extraction and electrophoresis device". Analyst 141, nr 5 (2016): 1660–68. http://dx.doi.org/10.1039/c5an02352a.
Pełny tekst źródłaVrouwe, Elwin X., Regina Luttge, Istvan Vermes i Albert van den Berg. "Microchip Capillary Electrophoresis for Point-of-Care Analysis of Lithium". Clinical Chemistry 53, nr 1 (1.01.2007): 117–23. http://dx.doi.org/10.1373/clinchem.2007.073726.
Pełny tekst źródłaLudwig, Martin, i Detlev Belder. "Coated microfluidic devices for improved chiral separations in microchip electrophoresis". ELECTROPHORESIS 24, nr 15 (sierpień 2003): 2481–86. http://dx.doi.org/10.1002/elps.200305498.
Pełny tekst źródłaKricka, Larry J. "Miniaturization of analytical systems". Clinical Chemistry 44, nr 9 (1.09.1998): 2008–14. http://dx.doi.org/10.1093/clinchem/44.9.2008.
Pełny tekst źródłaGibson, Larry R., i Paul W. Bohn. "Non-aqueous microchip electrophoresis for characterization of lipid biomarkers". Interface Focus 3, nr 3 (6.06.2013): 20120096. http://dx.doi.org/10.1098/rsfs.2012.0096.
Pełny tekst źródłaBelder, Detlev, Alfred Deege, Frank Kohler i Martin Ludwig. "Poly(vinyl alcohol)-coated microfluidic devices for high-performance microchip electrophoresis". ELECTROPHORESIS 23, nr 20 (październik 2002): 3567–73. http://dx.doi.org/10.1002/1522-2683(200210)23:20<3567::aid-elps3567>3.0.co;2-3.
Pełny tekst źródłaBeauchamp, Michael J., Anna V. Nielsen, Hua Gong, Gregory P. Nordin i Adam T. Woolley. "3D Printed Microfluidic Devices for Microchip Electrophoresis of Preterm Birth Biomarkers". Analytical Chemistry 91, nr 11 (6.05.2019): 7418–25. http://dx.doi.org/10.1021/acs.analchem.9b01395.
Pełny tekst źródłaGhanim, M. H., i M. Z. Abdullah. "Integrating amperometric detection with electrophoresis microchip devices for biochemical assays: Recent developments". Talanta 85, nr 1 (lipiec 2011): 28–34. http://dx.doi.org/10.1016/j.talanta.2011.04.069.
Pełny tekst źródłaTsai, Yuan-Chien, Hsiu-Ping Jen, Kuan-Wen Lin i You-Zung Hsieh. "Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis". Journal of Chromatography A 1111, nr 2 (kwiecień 2006): 267–71. http://dx.doi.org/10.1016/j.chroma.2005.12.003.
Pełny tekst źródłaAboud, Nacéra, Davide Ferraro, Myriam Taverna, Stéphanie Descroix, Claire Smadja i N. Thuy Tran. "Dyneon THV, a fluorinated thermoplastic as a novel material for microchip capillary electrophoresis". Analyst 141, nr 20 (2016): 5776–83. http://dx.doi.org/10.1039/c6an00821f.
Pełny tekst źródłaPetkovic, Karolina, Anthony Swallow, Robert Stewart, Yuan Gao, Sheng Li, Fiona Glenn, Januar Gotama i in. "An Integrated Portable Multiplex Microchip Device for Fingerprinting Chemical Warfare Agents". Micromachines 10, nr 9 (16.09.2019): 617. http://dx.doi.org/10.3390/mi10090617.
Pełny tekst źródłaHupert, Mateusz L., W. Jason Guy, Shawn D. Llopis, Hamed Shadpour, Sudheer Rani, Dimitris E. Nikitopoulos i Steven A. Soper. "Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices". Microfluidics and Nanofluidics 3, nr 1 (7.06.2006): 1–11. http://dx.doi.org/10.1007/s10404-006-0091-x.
Pełny tekst źródłaGabriel, Ellen F. M., Claudimir L. do Lago, Ângelo L. Gobbi, Emanuel Carrilho i Wendell K. T. Coltro. "Characterization of microchip electrophoresis devices fabricated by direct-printing process with colored toner". ELECTROPHORESIS 34, nr 15 (12.07.2013): 2169–76. http://dx.doi.org/10.1002/elps.201300024.
Pełny tekst źródłaLlopis, Shawn D., Wieslaw Stryjewski i Steven A. Soper. "Near-infrared time-resolved fluorescence lifetime determinations in poly(methylmethacrylate) microchip electrophoresis devices". ELECTROPHORESIS 25, nr 21-22 (listopad 2004): 3810–19. http://dx.doi.org/10.1002/elps.200406054.
Pełny tekst źródłaSalimi-Moosavi, Hossein, Yutao Jiang, Lianne Lester, Graham McKinnon i D. Jed Harrison. "A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices". Electrophoresis 21, nr 7 (1.04.2000): 1291–99. http://dx.doi.org/10.1002/(sici)1522-2683(20000401)21:7<1291::aid-elps1291>3.0.co;2-5.
Pełny tekst źródłaWang, Ai-Jun, Jing-Juan Xu i Hong-Yuan Chen. "Enhanced Microchip Electrophoresis of Neurotransmitters on Glucose Oxidase Modified Poly(dimethylsiloxane) Microfluidic Devices". Electroanalysis 19, nr 6 (marzec 2007): 674–80. http://dx.doi.org/10.1002/elan.200603797.
Pełny tekst źródłaKim, Min-Su, Seung Il Cho, Kook-Nyung Lee i Yong-Kweon Kim. "Fabrication of microchip electrophoresis devices and effects of channel surface properties on separation efficiency". Sensors and Actuators B: Chemical 107, nr 2 (czerwiec 2005): 818–24. http://dx.doi.org/10.1016/j.snb.2004.12.069.
Pełny tekst źródłaJacobson, Stephen C., Roland Hergenroder, Lance B. Koutny, R. J. Warmack i J. Michael Ramsey. "Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices". Analytical Chemistry 66, nr 7 (kwiecień 1994): 1107–13. http://dx.doi.org/10.1021/ac00079a028.
Pełny tekst źródłaFogarty, Barbara A., Kathleen E. Heppert, Theodore J. Cory, Kalonie R. Hulbutta, R. Scott Martin i Susan M. Lunte. "Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using CO2 laser ablation". Analyst 130, nr 6 (2005): 924. http://dx.doi.org/10.1039/b418299e.
Pełny tekst źródłaNaruishi, Nahoko, Yoshihide Tanaka, Tetsuji Higashi i Shin-ichi Wakida. "Highly efficient dynamic modification of plastic microfluidic devices using proteins in microchip capillary electrophoresis". Journal of Chromatography A 1130, nr 2 (październik 2006): 169–74. http://dx.doi.org/10.1016/j.chroma.2006.07.005.
Pełny tekst źródłaBidulock, Allison C. E., Albert van den Berg i Jan C. T. Eijkel. "Improving chip-to-chip precision in disposable microchip capillary electrophoresis devices with internal standards". ELECTROPHORESIS 36, nr 6 (20.02.2015): 875–83. http://dx.doi.org/10.1002/elps.201400399.
Pełny tekst źródłaFischer, David J., Matthew K. Hulvey, Anne R. Regel i Susan M. Lunte. "Amperometric detection in microchip electrophoresis devices: Effect of electrode material and alignment on analytical performance". ELECTROPHORESIS 30, nr 19 (październik 2009): 3324–33. http://dx.doi.org/10.1002/elps.200900317.
Pełny tekst źródłaYap, Yiing C., Rosanne M. Guijt, Tracey C. Dickson, Anna E. King i Michael C. Breadmore. "Stainless Steel Pinholes for Fast Fabrication of High-Performance Microchip Electrophoresis Devices by CO2 Laser Ablation". Analytical Chemistry 85, nr 21 (15.10.2013): 10051–56. http://dx.doi.org/10.1021/ac402631g.
Pełny tekst źródłaLacher, Nathan A., Nico F. de Rooij, Elisabeth Verpoorte i Susan M. Lunte. "Comparison of the performance characteristics of poly(dimethylsiloxane) and Pyrex microchip electrophoresis devices for peptide separations". Journal of Chromatography A 1004, nr 1-2 (lipiec 2003): 225–35. http://dx.doi.org/10.1016/s0021-9673(03)00722-2.
Pełny tekst źródłaMinucci, Angelo, Giulia Canu, Maria De Bonis, Elisabetta Delibato i Ettore Capoluongo. "Is capillary electrophoresis on microchip devices able to genotype uridine diphosphate glucuronosyltransferase 1A1 TATA-box polymorphisms?" Journal of Separation Science 37, nr 12 (2.05.2014): 1521–23. http://dx.doi.org/10.1002/jssc.201400235.
Pełny tekst źródłaYu, Ming, Qingsong Wang, James E. Patterson i Adam T. Woolley. "Multilayer Polymer Microchip Capillary Array Electrophoresis Devices with Integrated On-Chip Labeling for High-Throughput Protein Analysis". Analytical Chemistry 83, nr 9 (maj 2011): 3541–47. http://dx.doi.org/10.1021/ac200254c.
Pełny tekst źródłaSahore, Vishal, Mukul Sonker, Anna V. Nielsen, Radim Knob, Suresh Kumar i Adam T. Woolley. "Automated microfluidic devices integrating solid-phase extraction, fluorescent labeling, and microchip electrophoresis for preterm birth biomarker analysis". Analytical and Bioanalytical Chemistry 410, nr 3 (10.08.2017): 933–41. http://dx.doi.org/10.1007/s00216-017-0548-7.
Pełny tekst źródłaTähkä, Sari M., Ashkan Bonabi, Maria-Elisa Nordberg, Meeri Kanerva, Ville P. Jokinen i Tiina M. Sikanen. "Thiol-ene microfluidic devices for microchip electrophoresis: Effects of curing conditions and monomer composition on surface properties". Journal of Chromatography A 1426 (grudzień 2015): 233–40. http://dx.doi.org/10.1016/j.chroma.2015.11.072.
Pełny tekst źródłaColombo, Raffaella, i Adele Papetti. "Pre-Concentration and Analysis of Mycotoxins in Food Samples by Capillary Electrophoresis". Molecules 25, nr 15 (29.07.2020): 3441. http://dx.doi.org/10.3390/molecules25153441.
Pełny tekst źródłaSonker, Mukul, Radim Knob, Vishal Sahore i Adam T. Woolley. "Integrated electrokinetically driven microfluidic devices with pH-mediated solid-phase extraction coupled to microchip electrophoresis for preterm birth biomarkers". ELECTROPHORESIS 38, nr 13-14 (25.04.2017): 1743–54. http://dx.doi.org/10.1002/elps.201700054.
Pełny tekst źródłaCaruso, Giuseppe, Nicolò Musso, Margherita Grasso, Angelita Costantino, Giuseppe Lazzarino, Fabio Tascedda, Massimo Gulisano, Susan M. Lunte i Filippo Caraci. "Microfluidics as a Novel Tool for Biological and Toxicological Assays in Drug Discovery Processes: Focus on Microchip Electrophoresis". Micromachines 11, nr 6 (15.06.2020): 593. http://dx.doi.org/10.3390/mi11060593.
Pełny tekst źródłaYang, Mingpeng, Zhe Huang i Hui You. "A plug-in electrophoresis microchip with PCB electrodes for contactless conductivity detection". Royal Society Open Science 5, nr 5 (maj 2018): 171687. http://dx.doi.org/10.1098/rsos.171687.
Pełny tekst źródłaTähkä, Sari M., Ashkan Bonabi, Ville P. Jokinen i Tiina M. Sikanen. "Aqueous and non-aqueous microchip electrophoresis with on-chip electrospray ionization mass spectrometry on replica-molded thiol-ene microfluidic devices". Journal of Chromatography A 1496 (maj 2017): 150–56. http://dx.doi.org/10.1016/j.chroma.2017.03.018.
Pełny tekst źródłaAn, Ran, Yuncheng Man, Shamreen Iram, Erdem Kucukal, Muhammad Noman Hasan, Ambar Solis-Fuentes, Allison Bode i in. "Computer Vision and Deep Learning Assisted Microchip Electrophoresis for Integrated Anemia and Sickle Cell Disease Screening". Blood 136, Supplement 1 (5.11.2020): 46–47. http://dx.doi.org/10.1182/blood-2020-142548.
Pełny tekst źródłaMecker, Laura C., i R. Scott Martin. "Coupling Microdialysis Sampling to Microchip Electrophoresis in a Reversibly Sealed Device". JALA: Journal of the Association for Laboratory Automation 12, nr 5 (październik 2007): 296–302. http://dx.doi.org/10.1016/j.jala.2007.04.008.
Pełny tekst źródłaSonker, Mukul, Radim Knob, Vishal Sahore i Adam T. Woolley. "Back Cover: Integrated electrokinetically driven microfluidic devices with pH-mediated solid-phase extraction coupled to microchip electrophoresis for preterm birth biomarkers". ELECTROPHORESIS 38, nr 13-14 (lipiec 2017): NA. http://dx.doi.org/10.1002/elps.201770105.
Pełny tekst źródłaFraiwan, Arwa, Muhammad Noman Hasan, Ran An, Julia Z. Xu, Amy J. Rezac, Nicholas J. Kocmich, Tolulope Oginni i in. "International Multi-Site Clinical Validation of Point-of-Care Microchip Electrophoresis Test for Hemoglobin Variant Identification". Blood 134, Supplement_1 (13.11.2019): 3373. http://dx.doi.org/10.1182/blood-2019-129336.
Pełny tekst źródłaUeda, Masanori, Yuki Endo, Hirohisa Abe, Hiroki Kuyama, Hiroaki Nakanishi, Akihiro Arai i Yoshinobu Baba. "Field-inversion electrophoresis on a microchip device". ELECTROPHORESIS 22, nr 2 (styczeń 2001): 217–21. http://dx.doi.org/10.1002/1522-2683(200101)22:2<217::aid-elps217>3.0.co;2-o.
Pełny tekst źródłaJohnson, Alicia S., Benjamin T. Mehl i R. Scott Martin. "Integrated hybrid polystyrene–polydimethylsiloxane device for monitoring cellular release with microchip electrophoresis and electrochemical detection". Analytical Methods 7, nr 3 (2015): 884–93. http://dx.doi.org/10.1039/c4ay02569e.
Pełny tekst źródłaWang, Yineng, Xi Cao, Walter Messina, Anna Hogan, Justina Ugwah, Hanan Alatawi, Ed van Zalen i Eric Moore. "Development of a Mobile Analytical Chemistry Workstation Using a Silicon Electrochromatography Microchip and Capacitively Coupled Contactless Conductivity Detector". Micromachines 12, nr 3 (27.02.2021): 239. http://dx.doi.org/10.3390/mi12030239.
Pełny tekst źródłaGabriel, Ellen Flávia Moreira, Wendell Karlos Tomazelli Coltro i Carlos D. Garcia. "Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving". ELECTROPHORESIS 35, nr 16 (10.03.2014): 2325–32. http://dx.doi.org/10.1002/elps.201300511.
Pełny tekst źródłaGabriel, Ellen Flávia Moreira, Wendell Karlos Tomazelli Coltro i Carlos D. Garcia. "Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving". ELECTROPHORESIS 35, nr 16 (sierpień 2014): NA. http://dx.doi.org/10.1002/elps.201470140.
Pełny tekst źródłaLekwichai, A., S. Porntheeraphat, Win Bunjongpru, W. Sripumkhai, J. Supadech, S. Rahong, C. Hruanun, Amporn Poyai i J. Nukeaw. "A Disposable Polydimethylsiloxane Microdevice for DNA Amplification". Advanced Materials Research 93-94 (styczeń 2010): 105–8. http://dx.doi.org/10.4028/www.scientific.net/amr.93-94.105.
Pełny tekst źródłaSueyoshi, Kenji. "Recent Progress of On-line Combination of Preconcentration Device with Microchip Electrophoresis". CHROMATOGRAPHY 33, nr 1 (2012): 25–33. http://dx.doi.org/10.15583/jpchrom.2012.003.
Pełny tekst źródłaXia, Ling, i Debashis Dutta. "A Microchip Device for Enhancing Capillary Zone Electrophoresis Using Pressure-Driven Backflow". Analytical Chemistry 84, nr 22 (30.10.2012): 10058–63. http://dx.doi.org/10.1021/ac302530y.
Pełny tekst źródła