Gotowa bibliografia na temat „Electrophoresis microchip devices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Electrophoresis microchip devices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Electrophoresis microchip devices"
Munro, Nicole J., Karen Snow, Jeffrey A. Kant i James P. Landers. "Molecular Diagnostics on Microfabricated Electrophoretic Devices: From Slab Gel- to Capillary- to Microchip-based Assays for T- and B-Cell Lymphoproliferative Disorders". Clinical Chemistry 45, nr 11 (1.11.1999): 1906–17. http://dx.doi.org/10.1093/clinchem/45.11.1906.
Pełny tekst źródłaHa, Ji Won. "Acupuncture Injection Combined with Electrokinetic Injection for Polydimethylsiloxane Microfluidic Devices". Journal of Analytical Methods in Chemistry 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/7495348.
Pełny tekst źródłaFister, Julius C., Stephen C. Jacobson i J. Michael Ramsey. "Ultrasensitive Cross-Correlation Electrophoresis on Microchip Devices". Analytical Chemistry 71, nr 20 (październik 1999): 4460–64. http://dx.doi.org/10.1021/ac990853d.
Pełny tekst źródłaChen, Yu-Hung, Wei-Chang Wang, Kung-Chia Young, Ting-Tsung Chang i Shu-Hui Chen. "Plastic Microchip Electrophoresis for Analysis of PCR Products of Hepatitis C Virus". Clinical Chemistry 45, nr 11 (1.11.1999): 1938–43. http://dx.doi.org/10.1093/clinchem/45.11.1938.
Pełny tekst źródłaRodríguez, Isabel, Lian Ji Jin i Sam F. Y. Li. "High-speed chiral separations on microchip electrophoresis devices". Electrophoresis 21, nr 1 (1.01.2000): 211–19. http://dx.doi.org/10.1002/(sici)1522-2683(20000101)21:1<211::aid-elps211>3.0.co;2-d.
Pełny tekst źródłaKumar, Suresh, Vishal Sahore, Chad I. Rogers i Adam T. Woolley. "Development of an integrated microfluidic solid-phase extraction and electrophoresis device". Analyst 141, nr 5 (2016): 1660–68. http://dx.doi.org/10.1039/c5an02352a.
Pełny tekst źródłaVrouwe, Elwin X., Regina Luttge, Istvan Vermes i Albert van den Berg. "Microchip Capillary Electrophoresis for Point-of-Care Analysis of Lithium". Clinical Chemistry 53, nr 1 (1.01.2007): 117–23. http://dx.doi.org/10.1373/clinchem.2007.073726.
Pełny tekst źródłaLudwig, Martin, i Detlev Belder. "Coated microfluidic devices for improved chiral separations in microchip electrophoresis". ELECTROPHORESIS 24, nr 15 (sierpień 2003): 2481–86. http://dx.doi.org/10.1002/elps.200305498.
Pełny tekst źródłaKricka, Larry J. "Miniaturization of analytical systems". Clinical Chemistry 44, nr 9 (1.09.1998): 2008–14. http://dx.doi.org/10.1093/clinchem/44.9.2008.
Pełny tekst źródłaGibson, Larry R., i Paul W. Bohn. "Non-aqueous microchip electrophoresis for characterization of lipid biomarkers". Interface Focus 3, nr 3 (6.06.2013): 20120096. http://dx.doi.org/10.1098/rsfs.2012.0096.
Pełny tekst źródłaRozprawy doktorskie na temat "Electrophoresis microchip devices"
Roychoudhury, Appan. "Biosensors and capillary electrophoresis microchip devices for analytical applications". Thesis, IIT, Delhi, 2019. http://eprint.iitd.ac.in:80//handle/2074/8069.
Pełny tekst źródłaPagaduan, Jayson Virola. "Immunoassays of Potential Cancer Biomarkers in Microfluidic Devices". BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5772.
Pełny tekst źródłaJiang, Yutao. "A multi-reflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ40064.pdf.
Pełny tekst źródłaBeauchamp, Michael J. "3D Printed Microfluidic Devices for Bioanalysis". BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8566.
Pełny tekst źródłaWeldegebriel, Amos. "A UV detector for microfluidic devices". Thesis, Kansas State University, 2014. http://hdl.handle.net/2097/17626.
Pełny tekst źródłaDepartment of Chemistry
Christopher T. Culbertson
Chemical separation involves selective movement of a component out of a region shared by multiple components into a region where it is the major occupant. The history of the field of chemical separations as a concept can be dated back to ancient times when people started improving the quality of life by separation of good materials from bad ones. Since then the field of chemical separation has become one of the most continually evolving branches of chemical science and encompasses numerous different techniques and principles. An analytical chemist’s quest for a better way of selective identification and quantification of a component by separating it from its mixture is the cause for these ever evolving techniques. As a result, today there are numerous varieties of analytical techniques for the separation of complex mixtures. High Performance Liquid Chromatography (HPLC), Gas Chromatography (GC), Capillary Electrophoresis (CE) and Gel Electrophoresis are a few out of a long list. Each these techniques manipulates the different physical and chemical properties of an analyte to achieve a useful separation and thus certain techniques will be suited for certain molecules. This work primarily focuses on the use of Capillary Electrophoresis as a separation technique. The mechanism of separation in Capillary Zone Electrophoresis and principles of UV detection will discussed in chapter one. Chapter two contains a discussion about the application of Capillary Electrophoresis (CE) on microfluidc devices. This will include sections on: microfabrication techniques of PDMS and photosensitized PDMS (photoPDMS), a UV detector for microfluidic devices and its application for the detection of wheat proteins. In Chapter three we report the experimental part of this project which includes; investigations on the effect of UV exposure time and thermal curing time on feature dimensions of photoPDMS microfluidic device, investigations on the injection and separation performances of the device, characterization of a UV detector set up and its application for the separation and detection of wheat gliadin proteins. The results of these investigations are presented in chapter four.
Du, Fuying, i 杜富滢. "Microchip-capillary electrophoresis devices with dual-electrode detectors for determination of polyphenols, amino acids andmetabolites in wine and biofluids". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48521693.
Pełny tekst źródłapublished_or_final_version
Chemistry
Doctoral
Doctor of Philosophy
Kumar, Suresh. "Design, Fabrication, and Optimization of Miniaturized Devices for Bioanalytical Applications". BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5979.
Pełny tekst źródłaSonker, Mukul. "Electrokinetically Operated Integrated Microfluidic Devices for Preterm Birth Biomarker Analysis". BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/7001.
Pełny tekst źródłaAgostinelli, Simone. "A compartmentalised microchip platform with charged hydrogel to study protein diffusion for Single Cell Analysis". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20333/.
Pełny tekst źródłaLo, Chih-Cheng. "Dna electrophoresis in photopolymerized polyacrylamide gels on a microfluidic device". [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2685.
Pełny tekst źródłaKsiążki na temat "Electrophoresis microchip devices"
Fung, Ying Sing, Fuying Du, Wenpeng Guo, Tongmei Ma i Qidan Chen. Microfluidic Chip-Capillary Electrophoresis Devices. Taylor & Francis Group, 2015.
Znajdź pełny tekst źródłaMicrofluidic Chip-Capillary Electrophoresis Devices. Taylor & Francis Group, 2015.
Znajdź pełny tekst źródłaFung, Ying Sing, Fuying Du, Wenpeng Guo, Tongmei Ma i Qidan Chen. Microfluidic Chip-Capillary Electrophoresis Devices. Taylor & Francis Group, 2019.
Znajdź pełny tekst źródłaFung, Ying Sing, Fuying Du, Wenpeng Guo, Tongmei Ma i Qidan Chen. Microfluidic Chip-Capillary Electrophoresis Devices. Taylor & Francis Group, 2015.
Znajdź pełny tekst źródłaCzęści książek na temat "Electrophoresis microchip devices"
Shiddiky, Muhammad J. A., i Yoon-Bo Shim. "Microchip and Capillary Electrophoresis Using Nanoparticles". W Microfluidic Devices in Nanotechnology, 213–53. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470622551.ch6.
Pełny tekst źródłaNielsen, Anna V., i Adam T. Woolley. "Device Fabrication and Fluorescent Labeling of Preterm Birth Biomarkers for Microchip Electrophoresis". W Methods in Molecular Biology, 175–84. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9213-3_12.
Pełny tekst źródłaWu, Ruige, Zhiping Wang i Ying Sing Fung. "Multidimensional Microchip-Capillary Electrophoresis Device for Determination of Functional Proteins in Infant Milk Formula". W Methods in Molecular Biology, 111–18. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2353-3_10.
Pełny tekst źródłaKwok, Yien C., Braden C. Giordano, Jerome P. Ferrance i James P. Landers. "Infrared-Mediated Thermocycling for DNA Amplification and Electrophoretic Separation on an Integrated Microchip Device". W Micro Total Analysis Systems 2002, 193–94. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0295-0_64.
Pełny tekst źródłaSchappler, Julie, Jean-Luc Veuthey i Serge Rudaz. "18 Coupling CE and microchip-based devices with mass spectrometry". W Capillary Electrophoresis Methods for Pharmaceutical Analysis, 477–521. Elsevier, 2008. http://dx.doi.org/10.1016/s0149-6395(07)00018-9.
Pełny tekst źródła"Implementing Sample Preconcentration in Microfluidic Devices". W Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, 1397–440. CRC Press, 2007. http://dx.doi.org/10.1201/9781420004953-59.
Pełny tekst źródła"Microfluidic Devices with Mass Spectrometry Detection". W Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, 1481–528. CRC Press, 2007. http://dx.doi.org/10.1201/9781420004953-62.
Pełny tekst źródła"Implementing Sample Preconcentration in Microfluidic Devices". W Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, 1397–440. CRC Press, 2007. http://dx.doi.org/10.1201/9781420004953-59.
Pełny tekst źródła"Microfluidic Devices with Mass Spectrometry Detection". W Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, 1481–528. CRC Press, 2007. http://dx.doi.org/10.1201/9781420004953-62.
Pełny tekst źródłaLegendre, Lindsay, James Landers i Jerome Ferrance. "Microfluidic Devices for Electrophoretic Separations". W Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, Third Edition, 335–58. CRC Press, 2007. http://dx.doi.org/10.1201/9781420004953.ch10.
Pełny tekst źródłaStreszczenia konferencji na temat "Electrophoresis microchip devices"
Jacobson, Stephen C., Christopher T. Culbertson i J. Michael Ramsey. "High Speed Microchip Electrophoresis". W Laser Applications to Chemical and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/lacea.1998.lmb.3.
Pełny tekst źródłaTakarada, Tohru, Yuzo Hamaguchi, Masako Ogawa i Mizuo Maeda. "Novel Affinity Microchip Electrophoresis for Gene Mutation Assay". W 2002 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2002. http://dx.doi.org/10.7567/ssdm.2002.lc-1-2.
Pełny tekst źródła"MICROCHIP CAPILLARY ELECTROPHORESIS DEVICE FOR AMPEROMETRIC DETECTION OF DNA WITH REDOX INTERCALATION". W International Conference on Biomedical Electronics and Devices. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003290802840287.
Pełny tekst źródłaPennathur, Sumita, Fabio Baldessari, Mike Kattah, Paul J. Utz i Juan G. Santiago. "Electrophoresis in Nanochannels". W ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98558.
Pełny tekst źródła"CAPILLARY ELECTROPHORESIS ELECTROCHEMICAL DETECTOR WITH NOBLE MICROCHANNEL STRUCTURE FOR MINIATURIZATION - Development of a Capillary Electrophoresis Microchip Format Electrochemical Detector for Endocrine Disruptors Sensing". W International Conference on Biomedical Electronics and Devices. SciTePress - Science and and Technology Publications, 2008. http://dx.doi.org/10.5220/0001046901300133.
Pełny tekst źródłaShao, Zhanjie, Carolyn L. Ren i Gerry E. Schneider. "Multi-Step Dynamic Control for Enhanced Electrokinetic Transport Characteristics in Microchip Capillary Electrophoresis". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68831.
Pełny tekst źródłaOhara, T., i A. Majumdar. "Ratcheting Electrophoresis Microchip (REM) for Programmable Transport and Separation of Macromolecules". W ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/mems-23888.
Pełny tekst źródłaDunphy, Katherine, Veljko Milanovic, Samantha Andrews, Taku Ohara i Arun Majumdar. "Rapid Separation and Manipulation of DNA by a Ratcheting Electrophoresis Microchip (REM)". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33564.
Pełny tekst źródłaRamsey, J. Michael. "Lab-on-a-Chip Devices: Thinking Small About Chemical and Biochemical Measurements". W Laser Applications to Chemical and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/lacea.1998.lmb.1.
Pełny tekst źródłaFister, J. C., L. M. Davis, S. C. Jacobson i J. M. Ramsey. "High Sensitivity Detection on Microchips". W Laser Applications to Chemical and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/lacea.1996.lwd.6.
Pełny tekst źródła