Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Electroorganic.

Artykuły w czasopismach na temat „Electroorganic”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Electroorganic”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Breinbauer, Rolf. "Electroorganic Reductions Syntheses". Synthesis 2006, nr 17 (wrzesień 2006): 2974. http://dx.doi.org/10.1055/s-2006-951382.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Montenegro, I. "Modern electroorganic chemistry". Journal of Electroanalytical Chemistry 387, nr 1-2 (maj 1995): 152. http://dx.doi.org/10.1016/0022-0728(95)90299-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Gieshoff, Tile, Anton Kehl, Dieter Schollmeyer, Kevin D. Moeller i Siegfried R. Waldvogel. "Electrochemical synthesis of benzoxazoles from anilides – a new approach to employ amidyl radical intermediates". Chemical Communications 53, nr 20 (2017): 2974–77. http://dx.doi.org/10.1039/c7cc00927e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Lateef, Shaik, Srinivasulu Reddy Krishna Mohan i Srinivasulu Reddy Jayarama Reddy. "Electroorganic synthesis of benzathine". Tetrahedron Letters 48, nr 1 (styczeń 2007): 77–80. http://dx.doi.org/10.1016/j.tetlet.2006.11.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Nematollahi, Davood, i Esmail Tammari. "Electroorganic Synthesis of Catecholthioethers". Journal of Organic Chemistry 70, nr 19 (wrzesień 2005): 7769–72. http://dx.doi.org/10.1021/jo0508301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Waldvogel, S. R. "Challenges in Electroorganic Synthesis". Chemie Ingenieur Technik 86, nr 9 (28.08.2014): 1447. http://dx.doi.org/10.1002/cite.201450707.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Cantillo, David. "Synthesis of active pharmaceutical ingredients using electrochemical methods: keys to improve sustainability". Chemical Communications 58, nr 5 (2022): 619–28. http://dx.doi.org/10.1039/d1cc06296d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Momeni, Shima, i Davood Nematollahi. "Electrosynthesis of new quinone sulfonimide derivatives using a conventional batch and a new electrolyte-free flow cell". Green Chemistry 20, nr 17 (2018): 4036–42. http://dx.doi.org/10.1039/c8gc01727a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Shin, Samuel J., Sangmee Park, Jin-Young Lee, Jae Gyeong Lee, Jeongse Yun, Dae-Woong Hwang i Taek Dong Chung. "Cathodic electroorganic reaction on silicon oxide dielectric electrode". Proceedings of the National Academy of Sciences 117, nr 52 (14.12.2020): 32939–46. http://dx.doi.org/10.1073/pnas.2005122117.

Pełny tekst źródła
Streszczenie:
The faradaic reaction at the insulator is counterintuitive. For this reason, electroorganic reactions at the dielectric layer have been scarcely investigated despite their interesting aspects and opportunities. In particular, the cathodic reaction at a silicon oxide surface under a negative potential bias remains unexplored. In this study, we utilize defective 200-nm-thick n+-Si/SiO2 as a dielectric electrode for electrolysis in an H-type divided cell to demonstrate the cathodic electroorganic reaction of anthracene and its derivatives. Intriguingly, the oxidized products are generated at the cathode. The experiments under various conditions provide consistent evidence supporting that the electrochemically generated hydrogen species, supposedly the hydrogen atom, is responsible for this phenomenon. The electrogenerated hydrogen species at the dielectric layer suggests a synthetic strategy for organic molecules.
Style APA, Harvard, Vancouver, ISO itp.
10

TOKUDA, Masao. "Organometallic compounds in electroorganic synthesis." Journal of Synthetic Organic Chemistry, Japan 43, nr 6 (1985): 522–32. http://dx.doi.org/10.5059/yukigoseikyokaishi.43.522.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

BECK, Fritz, i Hiroshi SUGINOME. "Industrial Electroorganic Synthesis in Europe." Journal of Synthetic Organic Chemistry, Japan 49, nr 9 (1991): 798–808. http://dx.doi.org/10.5059/yukigoseikyokaishi.49.798.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

TORII, Sigeru. "Organometal Complexes in Electroorganic Synthesis." Journal of Synthetic Organic Chemistry, Japan 51, nr 11 (1993): 1024–42. http://dx.doi.org/10.5059/yukigoseikyokaishi.51.1024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Yoshida, Jun-ichi, Kazuhide Kataoka, Roberto Horcajada i Aiichiro Nagaki. "Modern Strategies in Electroorganic Synthesis". Chemical Reviews 108, nr 7 (lipiec 2008): 2265–99. http://dx.doi.org/10.1021/cr0680843.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Elsherbini, Mohamed, i Thomas Wirth. "Electroorganic Synthesis under Flow Conditions". Accounts of Chemical Research 52, nr 12 (6.11.2019): 3287–96. http://dx.doi.org/10.1021/acs.accounts.9b00497.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Gütz, Christoph, Bernhard Klöckner i Siegfried R. Waldvogel. "Electrochemical Screening for Electroorganic Synthesis". Organic Process Research & Development 20, nr 1 (21.12.2015): 26–32. http://dx.doi.org/10.1021/acs.oprd.5b00377.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Atobe, Mahito, Yoshifumi Kado i Tsutomu Nonaka. "Ultrasonic effects on electroorganic processes". Ultrasonics Sonochemistry 7, nr 3 (lipiec 2000): 97–102. http://dx.doi.org/10.1016/s1350-4177(99)00036-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Atobe, Mahito, Michiaki Sasahira i Tsutomu Nonaka. "Ultrasonic effects on electroorganic processes". Ultrasonics Sonochemistry 7, nr 3 (lipiec 2000): 103–7. http://dx.doi.org/10.1016/s1350-4177(99)00044-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Pletcher, Derek. "Novel trends in electroorganic synthesis". Journal of Electroanalytical Chemistry 422, nr 1-2 (luty 1997): 201. http://dx.doi.org/10.1016/s0022-0728(97)80113-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Grimshaw, James. "Recent advances in electroorganic synthesis". Electrochimica Acta 33, nr 9 (wrzesień 1988): 1255. http://dx.doi.org/10.1016/0013-4686(88)80160-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Bouzek, Karel, Vladimír Jiřičný, Roman Kodým, Jiří Křišťál i Tomáš Bystroň. "Microstructured reactor for electroorganic synthesis". Electrochimica Acta 55, nr 27 (listopad 2010): 8172–81. http://dx.doi.org/10.1016/j.electacta.2010.05.061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Atobe, Mahito, Naohiro Yamada, Toshio Fuchigami i Tsutomu Nonaka. "Ultrasonic effects on electroorganic processes". Electrochimica Acta 48, nr 12 (maj 2003): 1759–66. http://dx.doi.org/10.1016/s0013-4686(03)00153-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Cignitti, M. "Recent Advances in Electroorganic Synthesis." Bioelectrochemistry and Bioenergetics 19, nr 1 (marzec 1988): 187–88. http://dx.doi.org/10.1016/0302-4598(88)85026-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Pletcher, D. "Emerging Opportunities for Electroorganic Processes". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 195, nr 2 (listopad 1985): 439. http://dx.doi.org/10.1016/0022-0728(85)80065-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Hasegawa, Masaru, i Toshio Fuchigami. "Electroorganic reactions in ionic liquids". Electrochimica Acta 49, nr 20 (sierpień 2004): 3367–72. http://dx.doi.org/10.1016/j.electacta.2004.03.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Chaloner, Penny A. "Electroorganic Synthesis; Best synthetic Methods". Journal of Organometallic Chemistry 418, nr 1 (październik 1991): C17—C18. http://dx.doi.org/10.1016/0022-328x(91)86358-w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Atobe, Mahito, Naohiro Yamada i Tsutomu Nonaka. "Ultrasonic effects on electroorganic processes". Electrochemistry Communications 1, nr 11 (listopad 1999): 532–35. http://dx.doi.org/10.1016/s1388-2481(99)00111-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

MAKI, Shojiro, i Haruki NIWA. "The Application of Electroorganic Chemical Reaction." Journal of Synthetic Organic Chemistry, Japan 56, nr 9 (1998): 725–35. http://dx.doi.org/10.5059/yukigoseikyokaishi.56.725.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Takahashi, Machiko, Masato Fujita i Masatoki Ito. "SERS application to some electroorganic reactions". Surface Science Letters 158, nr 1-3 (lipiec 1985): A424. http://dx.doi.org/10.1016/0167-2584(85)90023-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Horcajada, Roberto, Masayuki Okajima, Seiji Suga i Jun-ichi Yoshida. "Microflow electroorganic synthesis without supporting electrolyte". Chemical Communications, nr 10 (2005): 1303. http://dx.doi.org/10.1039/b417388k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Takahashi, Machiko, Masato Fujita i Masatoki Ito. "SERS application to some electroorganic reactions". Surface Science 158, nr 1-3 (lipiec 1985): 307–13. http://dx.doi.org/10.1016/0039-6028(85)90305-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Ogawa, Kelli A., i Andrew J. Boydston. "Recent Developments in Organocatalyzed Electroorganic Chemistry". Chemistry Letters 44, nr 1 (5.01.2015): 10–16. http://dx.doi.org/10.1246/cl.140915.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Baizer, M. M. "Electroorganic processes practiced in the world". Pure and Applied Chemistry 58, nr 6 (1.01.1986): 889–94. http://dx.doi.org/10.1351/pac198658060889.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Nguyen, Zachary A., Dylan Boucher i Shelley D. Minteer. "Electrolyte Induced Solvent Cage Effects for Enantioselective Electrosynthesis". ECS Meeting Abstracts MA2022-02, nr 53 (9.10.2022): 2514. http://dx.doi.org/10.1149/ma2022-02532514mtgabs.

Pełny tekst źródła
Streszczenie:
Electrochemistry provides a tunable, regioselective, and green alternative to traditional synthetic organic methods, and access to reactive intermediates. Problematically, electrochemical redox events often go through planar radical intermediates, thus destroying enantioselectivity. As such, researchers have sought the “chiral electron”, a general methodology to impart enantioselectivity to electroorganic reactions. One strategy has been asymmetric transition metal catalysis while replacing the typical stochiometric redox reagent needed with electricity, thus providing a chiral pathway for elecoorganic reactions. However, the general physical parameters that govern enantioselectivity at electrochemical interfaces, remains poorly understood. Here, we focus on the effects of supporting electrolyte in synthetic organic electrochemistry, specifically its role in enantioselective reactions. Cyclic voltammetry provides a tool to investigate the mechanistic consequences of changes in electrolyte. Using the model reaction of enantioselective carboxylation with a cobalt catalyst, we observe changes in mechanism as the electrolyte size is varied. Specifically, electrolyte identity effects the lifetime of the chiral Co-alkyl intermediate. These fundamental electroanalytical studies provide a sound mechanistic basis for the origin of enantioselectivity in electroorganic reactions. In summary, these results of a general interest as a strategy to tune and improve enantioselectivity in electrochemical transformations.
Style APA, Harvard, Vancouver, ISO itp.
34

Beil, Sebastian B., Dennis Pollok i Siegfried R. Waldvogel. "Reproducibility in Electroorganic Synthesis—Myths and Misunderstandings". Angewandte Chemie International Edition 60, nr 27 (3.03.2021): 14750–59. http://dx.doi.org/10.1002/anie.202014544.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Regenbrecht, Carolin, i Siegfried R. Waldvogel. "Efficient electroorganic synthesis of 2,3,6,7,10,11-hexahydroxytriphenylene derivatives". Beilstein Journal of Organic Chemistry 8 (10.10.2012): 1721–24. http://dx.doi.org/10.3762/bjoc.8.196.

Pełny tekst źródła
Streszczenie:
2,3,6,7,10,11-Hexahydroxytriphenylene of good quality and purity can be obtained via anodic treatment of catechol ketals and subsequent acidic hydrolysis. The electrolysis is conducted in propylene carbonate circumventing toxic and expensive acetonitrile. The protocol is simple to perform and superior to other chemical or electrochemical methods. The key of the method is based on the low solubility of the anodically trimerized product. The shift of potentials is supported by cyclic voltammetry studies.
Style APA, Harvard, Vancouver, ISO itp.
36

SHONO, Tatsuya. "Electroorganic chemistry in organic synthesis. General survey." Journal of Synthetic Organic Chemistry, Japan 43, nr 6 (1985): 491–95. http://dx.doi.org/10.5059/yukigoseikyokaishi.43.491.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

FUCHIGAMI, Toshio. "Selective Electroorganic Reactions Using Transition Metal Complexes". Journal of Japan Oil Chemists' Society 39, nr 10 (1990): 888–94. http://dx.doi.org/10.5650/jos1956.39.10_888.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Gütz, Christoph, Andreas Stenglein i Siegfried R. Waldvogel. "Highly Modular Flow Cell for Electroorganic Synthesis". Organic Process Research & Development 21, nr 5 (4.05.2017): 771–78. http://dx.doi.org/10.1021/acs.oprd.7b00123.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Bellamy, A. J. "Electroorganic synthesis Festschriff for Manuel M. Baizer". Electrochimica Acta 39, nr 1 (styczeń 1994): 158. http://dx.doi.org/10.1016/0013-4686(94)85028-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Guetz, Christoph, Bernhard Kloeckner i Siegfried R. Waldvogel. "ChemInform Abstract: Electrochemical Screening for Electroorganic Synthesis". ChemInform 47, nr 11 (luty 2016): no. http://dx.doi.org/10.1002/chin.201611252.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

TORII, S. "ChemInform Abstract: Organometal Complexes in Electroorganic Synthesis". ChemInform 25, nr 13 (19.08.2010): no. http://dx.doi.org/10.1002/chin.199413303.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

NONAKA, Tsutomu, i Toshio FUCHIGAMI. "Modified electrodes and their applications to electroorganic reactions." Journal of Synthetic Organic Chemistry, Japan 43, nr 6 (1985): 565–74. http://dx.doi.org/10.5059/yukigoseikyokaishi.43.565.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

NISHIGUCHI, Ikuzo. "Experimental methods for electroorganic synthesis in a laboratory." Journal of Synthetic Organic Chemistry, Japan 43, nr 6 (1985): 617–33. http://dx.doi.org/10.5059/yukigoseikyokaishi.43.617.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

HISAEDA, Yoshio. "Electroorganic Reactions Mediated by Vitamin B12 Model Complexes." Journal of Synthetic Organic Chemistry, Japan 54, nr 10 (1996): 859–67. http://dx.doi.org/10.5059/yukigoseikyokaishi.54.859.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Rauen, Anna Lisa, Frank Weinelt i Siegfried R. Waldvogel. "Sustainable electroorganic synthesis of lignin-derived dicarboxylic acids". Green Chemistry 22, nr 18 (2020): 5956–60. http://dx.doi.org/10.1039/d0gc02210a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

KASHIWAGI, Yoshitomo. "Construction of Functional Electrode Interface for Electroorganic Synthesis". YAKUGAKU ZASSHI 127, nr 7 (1.07.2007): 1047–57. http://dx.doi.org/10.1248/yakushi.127.1047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Navarro, Marcelo. "Recent advances in experimental procedures for electroorganic synthesis". Current Opinion in Electrochemistry 2, nr 1 (kwiecień 2017): 43–52. http://dx.doi.org/10.1016/j.coelec.2017.03.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Thomas, F. B., P. A. Ramachandran, M. P. Dudukovic i R. E. W. Jansson. "Laminar radial flow electrochemical reactors. III. Electroorganic sysnthesis". Journal of Applied Electrochemistry 19, nr 6 (listopad 1989): 856–67. http://dx.doi.org/10.1007/bf01007933.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Nishiguchi, Ikuzo. "Some Progress and Development on Synthetic Electroorganic Chemistry". ECS Transactions 2, nr 22 (21.12.2019): 19–24. http://dx.doi.org/10.1149/1.2409000.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Pragst, F., i M. Niazymbetov. "Electrogenerated chemiluminescence in mechanistic investigations of electroorganic reactions". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 197, nr 1-2 (styczeń 1986): 245–64. http://dx.doi.org/10.1016/0022-0728(86)80153-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii