Gotowa bibliografia na temat „Electronics Printing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Electronics Printing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Electronics Printing"
DONG, WENTAO, XIAO CHENG i XIAOMING WANG. "THEORETICAL AND EXPERIMENTAL STUDY OF TAPE TRANSFER PRINTING FOR STRETCHABLE ELECTRONIC FABRICATION". Journal of Mechanics in Medicine and Biology 18, nr 04 (czerwiec 2018): 1850045. http://dx.doi.org/10.1142/s0219519418500458.
Pełny tekst źródłaJung, Hyunsuk, Wonbeom Lee i Jiheong Kang. "Recent Progress in Printing Conductive Materials for Stretchable Electronics". Journal of Flexible and Printed Electronics 1, nr 2 (grudzień 2022): 137–53. http://dx.doi.org/10.56767/jfpe.2022.1.2.137.
Pełny tekst źródłaLi, Lu Hai, Yi Fang, Zhi Qing Xin, Xiao Jun Tang, Peng Du i Wen Zhao. "Features of Printing and Display". Key Engineering Materials 428-429 (styczeń 2010): 372–78. http://dx.doi.org/10.4028/www.scientific.net/kem.428-429.372.
Pełny tekst źródłaAl-Amri, Amal M. "Recent Progress in Printed Photonic Devices: A Brief Review of Materials, Devices, and Applications". Polymers 15, nr 15 (29.07.2023): 3234. http://dx.doi.org/10.3390/polym15153234.
Pełny tekst źródłaBeedasy, Vimanyu, i Patrick J. Smith. "Printed Electronics as Prepared by Inkjet Printing". Materials 13, nr 3 (4.02.2020): 704. http://dx.doi.org/10.3390/ma13030704.
Pełny tekst źródłaSawamura, Fumiya, Chen Yi Ngu, Raiki Hanazaki, Kaito Kozuki, Sayaka Kado, Masatoshi Sakai i Kazuhiro Kudo. "Dry Printing of Ag–Ni Conductive Particles Using Toner-Type Printed Electronics". Applied Sciences 12, nr 19 (25.09.2022): 9616. http://dx.doi.org/10.3390/app12199616.
Pełny tekst źródłaRodes-Carbonell, Ana María, Josué Ferri, Eduardo Garcia-Breijo, Ignacio Montava i Eva Bou-Belda. "Influence of Structure and Composition of Woven Fabrics on the Conductivity of Flexography Printed Electronics". Polymers 13, nr 18 (18.09.2021): 3165. http://dx.doi.org/10.3390/polym13183165.
Pełny tekst źródłaMATSUOKA, Riki. "Printing Inks for Electronics Industry". Journal of Japan Oil Chemists' Society 35, nr 10 (1986): 835–42. http://dx.doi.org/10.5650/jos1956.35.835.
Pełny tekst źródłaSheats, Jayna R., David Biesty, Julien Noel i Gary N. Taylor. "Printing technology for ubiquitous electronics". Circuit World 36, nr 2 (18.05.2010): 40–47. http://dx.doi.org/10.1108/03056121011041690.
Pełny tekst źródłaQu, Shaoxing. "3D printing of hydrogel electronics". Nature Electronics 5, nr 12 (19.12.2022): 838–39. http://dx.doi.org/10.1038/s41928-022-00900-0.
Pełny tekst źródłaRozprawy doktorskie na temat "Electronics Printing"
Tehrani, Payman. "Electrochemical Switching in Conducting Polymers – Printing Paper Electronics". Doctoral thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15132.
Pełny tekst źródłaDagligen kommer vi i kontakt med olika plastmaterial. Dessa har vanligtvis mycket dålig elektrisk ledningsförmåga och används oftast som isolerande material. Det finns dock en klass av plaster som är halvledande eller ledande. Sedan upptäckten av dessa material för mer än 30 år sedan har nya material och användningsområden utvecklats och nu börjar de första produkterna baserad på organisk elektronik komma ut på marknaden. En stor fördel med de ledande plasterna är att egenskaperna kan anpassas genom att ändra den kemiska strukturen. Man kan dessutom lösa upp dem och skapa ledande bläck, som sedan kan användas i vanliga tryckmaskiner. Detta gör det möjligt att på ett enkelt och billigt sätt tillverka elektronik på liknande sätt som till exempel tidningar trycks idag. Den här avhandlingen behandlar en del av det nya området som berör elektrokemiska komponenter och några av dess tillämpningar. Fokus ligger främst på billig, tryckt elektronik. Bland annat presenteras ett sätt att fördubbla kontrasten för tryckta pappersdisplayer, ett nytt sätt att mönstra ledande plaster och elektrokemisk temperaturloggningsetikett som kan övervaka temperaturen för förpackningar under transport. Den mekanism som förstör ledningsförmågan vid höga spänningar har varit ett återkommande inslag i de studier som har genomförts här. Denna mekanism förstör komponenterna under drift men kan också användas för att ta bort ledningsförmågan som mönstringsmetod eller för att lagra information, permanent, i temperaturloggningsetiketten.
Yoshioka, Yuka. "Inkjet printing for fabrication of organic photonics and electronics". Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/280578.
Pełny tekst źródłaMannerbro, Richard, i Martin Ranlöf. "Inkjet and Screen Printed Electrochemical Organic Electronics". Thesis, Linköping University, Department of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8117.
Pełny tekst źródłaLinköpings Universitet och Acreo AB i Norrköping bedriver ett forskningssamarbete rörande organisk elektrokemisk elektronik och det man kallar papperselektronik. Målet på Acreo är att kunna trycka denna typ av elektronik med snabba trycktekniker så som offset- eller flexotryck. Idag görs de flesta demonstratorer och prototyper, baserade på denna typ av elektrokemisk elektronik, med manuella och subtraktiva mönstringsmetoder. Det skulle vara intressant att hitta fler verktyg och automatiserade tekniker som kan underlätta detta arbete. Målet med detta examensarbete har varit att utvärdera vilken potential bläckstråleteknik respektive screentryck har som tillverkningsmetoder för organiska elektrokemiska elektroniksystem samt att jämföra de båda teknikernas för- och nackdelar. Vad gäller bläckstråletekniken, så ingick även i uppgiften att modifiera en bläckstråleskrivare avsedd för kontor/hemmabruk för att möjliggöra tryckning av de två grundläggande materialen inom organisk elektrokemisk elektronik - den konjugerade polymeren PEDOT och en elektrolyt.
I denna uppsats rapporteras om hur en procedur för produktion av elektrokemisk elektronik har utvecklats. Världens första elektrokemiska transistor som producerats helt med bläckstråleteknik presenteras tillsammans med fullt fungerande implementeringar i logiska kretsar. Karaktärisering av filmer, komponenter och kretsar som producerats med bläckstråle- och screentrycksteknik har legat till grund för den utvärdering och jämförelse som har gjorts av teknikerna. Resultaten ser lovande ut och kan motivera vidare utveckling av bläckstrålesystem för produktion av prototyper och mindre serier. En kombination av de båda nämnda teknikerna är också ett tänkbart alternativ för småskalig tillverkning.
Linköping University and the research institute Acreo AB in Norrköping are in collaboration conducting research on organic electrochemical electronic devices. Acreo is pushing the development of high-speed reel-to-reel printing of this type of electronics. Today, most demonstrators and prototypes are made using manual, subtractive patterning methods. More tools, simplifying this work, are of interest. The purpose of this thesis work was to evaluate the potential of both inkjet and screen printing as manufacturing tools of electrochemical devices and to conduct a comparative study of these two additive patterning technologies. The work on inkjet printing included the modification of a commercially available desktop inkjet printer in order to print the conjugated polymer PEDOT and an electrolyte solution - these are the two basic components of organic electrochemical devices. For screen printing, existing equipment at Acreo AB was employed for device production.
In this report the successful development of a simple system and procedure for the inkjet printing of organic electrochemical devices is described. The first all-inkjet printed electrochemical transistor (ECT) and fully functional implementations of these ECTs in printed electrochemical logical circuits are presented.
The characterization of inkjet and screen printed devices has, along with an evaluation of how suitable the two printing procedures are for prototype production, been the foundation of the comparison of the two printing technologies.
The results are promising and should encourage further effort to develop a more complete and easily controlled inkjet system for this application. At this stage of development, a combination of the two technologies seems like an efficient approach.
Lim, Ying Ying. "Printing conductive traces to enable high frequency wearable electronics applications". Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/17880.
Pełny tekst źródłaWinarski, David J. "Development of zinc oxide based flexible electronics". Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1558088851479794.
Pełny tekst źródłaMustonen, T. (Tero). "Inkjet printing of carbon nanotubes for electronic applications". Doctoral thesis, University of Oulu, 2009. http://urn.fi/urn:isbn:9789514293092.
Pełny tekst źródłaPalacios, Sebastian R. "A smart wireless integrated module (SWIM) on organic substrates using inkjet printing technology". Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51906.
Pełny tekst źródłaAlasmar, Rawsam. "A quantitative analysis of the value added services produced by digital color printers as perceived by print buyers /". Online version of thesis, 1996. http://hdl.handle.net/1850/11966.
Pełny tekst źródłaHines, Daniel R. "Organic electronics with polymer dielectrics on plastic substrates fabricated via transfer printing". College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7685.
Pełny tekst źródłaThesis research directed by: Dept. of Chemical Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Tangvichachan, Theera. "Conversion of solid ink density and dot gain specifications into colorimetric specifications /". Online version of thesis, 1993. http://hdl.handle.net/1850/11886.
Pełny tekst źródłaKsiążki na temat "Electronics Printing"
Graphic communications: The printed image. South Holland, Ill: Goodheart-Willcox, 1989.
Znajdź pełny tekst źródłaReiner, Eschbach, Marcu Gabriel G, IS & T--the Society for Imaging Science and Technology. i Society of Photo-optical Instrumentation Engineers., red. Color imaging XII: Processing, hardcopy, and applications : 30 January-1 February, 2007, San Jose, California, USA. Bellingham, Wash: SPIE, 2007.
Znajdź pełny tekst źródłaFink, Johannes Karl. The Chemistry of Printing Inks and Their Electronics and Medical Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119041337.
Pełny tekst źródłaB, Beretta Giordano, Eschbach Reiner, Society of Photographic Instrumentation Engineers. i IS & T--the Society for Imaging Science and Technology., red. Color imaging: Device-independent color, color hardcopy, and graphic arts IV : 26-29 January, 1999, San Jose, California. Bellingham, Washington: SPIE--the International Society for Optical Engineering, 1998.
Znajdź pełny tekst źródłaB, Beretta Giordano, Eschbach Reiner, IS & T--the Society for Imaging Science and Technology. i Society of Photo-optical Instrumentation Engineers., red. Color imaging: Device-independent color, color hard copy, and graphic arts II : 10-14 February, 1997, San Jose, California. Bellingham, Wash: SPIE--the International Society for Optical Engineering, 1997.
Znajdź pełny tekst źródłaReiner, Eschbach, Marcu Gabriel G, IS & T--the Society for Imaging Science and Technology. i Society of Photo-optical Instrumentation Engineers., red. Color imaging IX: Processing, hardcopy, and applications : 20-22 January 2004, San Jose, California, USA. Bellingham, Wash., USA: SPIE, 2004.
Znajdź pełny tekst źródłaExploring digital prepress. Clifton Park, NY: Thomson/Delmar Learning, 2007.
Znajdź pełny tekst źródła(1996), TAPPI New Printing Technologies Symposium. 1996 TAPPI New Printing Technologies Symposium: Proceedings. Atlanta, GA: Tappi press, 1996.
Znajdź pełny tekst źródłaEschbach, Reiner. Color imaging XIII: Processing, hardcopy, and applications : 29-31 January 2008, San Jose, California, USA. Bellingham, Wash: SPIE, 2008.
Znajdź pełny tekst źródłaReiner, Eschbach, Marcu Gabriel G, IS & T--the Society for Imaging Science and Technology. i Society of Photo-optical Instrumentation Engineers., red. Color imaging XI: Processing, hardcopy, and applications : 17-19 January, 2006, San Jose, California, USA. Bellingham, Wash: SPIE, 2006.
Znajdź pełny tekst źródłaCzęści książek na temat "Electronics Printing"
Hood-Daniel, Patrick, i James Floyd Kelly. "Mounting Electronics". W Printing in Plastic, 285–300. Berkeley, CA: Apress, 2011. http://dx.doi.org/10.1007/978-1-4302-3444-9_16.
Pełny tekst źródłaKeeler, Robert. "Screen Printing". W The Electronics Assembly Handbook, 293–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-13161-9_50.
Pełny tekst źródłaLin, Jian. "Printing Processes and Equipments". W Printed Electronics, 106–44. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2016. http://dx.doi.org/10.1002/9781118920954.ch4.
Pełny tekst źródłaBois, Chloé, Marie-Ève Huppé, Michael Rozel i Ngoc Duc Trinh. "Printing Techniques". W Flexible, Wearable, and Stretchable Electronics, 107–36. First edition. | Boca Raton : CRC Press, 2020. | Series: Devices, circuits, & systems: CRC Press, 2020. http://dx.doi.org/10.1201/9780429263941-4.
Pełny tekst źródłaTorrisi, Felice, i Tian Carey. "Printing 2D Materials". W Flexible Carbon-based Electronics, 131–205. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527804894.ch6.
Pełny tekst źródłaMurr, Lawrence E. "3D Printing: Printed Electronics". W Handbook of Materials Structures, Properties, Processing and Performance, 613–28. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-01815-7_35.
Pełny tekst źródłaMurr, Lawrence E. "3D Printing: Printed Electronics". W Handbook of Materials Structures, Properties, Processing and Performance, 1–15. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01905-5_35-1.
Pełny tekst źródłaLee, Hee Hyun, John Rogers i Graciela Blanchet. "Thermal Imaging and Micro-contact Printing". W Organic Electronics, 233–70. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527608753.ch10.
Pełny tekst źródłaSubramanian, Vivek, Alejandro de la Fuente Vornbrock, Steve Molesa, Daniel Soltman i Huai-Yuan Tseng. "Printing Techniques for Thin-Film Electronics". W Organic Electronics II, 235–54. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527640218.ch7.
Pełny tekst źródłaTeunissen, Pit, Robert Abbel, Tamara Eggenhuizen, Michiel Coenen i Pim Groen. "Inkjet Printing for Printed Electronics". W Handbook of Industrial Inkjet Printing, 599–616. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527687169.ch35.
Pełny tekst źródłaStreszczenia konferencji na temat "Electronics Printing"
Furukawa, Tadahiro. "Printing technology for electronics". W 2016 International Conference on Electronics Packaging (ICEP). IEEE, 2016. http://dx.doi.org/10.1109/icep.2016.7486793.
Pełny tekst źródłaSirringhaus, H. "Polymer electronics - printing going submicron". W The Third International Seminar on Advances in Carbon Electronics. IEE, 2004. http://dx.doi.org/10.1049/ic:20040537.
Pełny tekst źródłaKadija, Igor. "Flexible Electronics Printing by Electroplating". W 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC). IEEE, 2019. http://dx.doi.org/10.23919/empc44848.2019.8951820.
Pełny tekst źródłaKim, Jihyeon, Dongho Oh, Youngjin Kim, Taehyeong Kim i Byeongcheol Lee. "Printing Pressure Uniformization Through Adaptive Feedforward Control in Roll-to-Roll Printing Process". W ASME-JSME 2018 Joint International Conference on Information Storage and Processing Systems and Micromechatronics for Information and Precision Equipment. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/isps-mipe2018-8511.
Pełny tekst źródłaHsiao, Wei-Han, Chun-Wei Su, Hsin-Chung Wu, Yi-Chi Yang, Cheng-Yi Shih i Chau-Jie Zhan. "Printing functional substrate for flexible electronics". W 2016 11th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2016. http://dx.doi.org/10.1109/impact.2016.7800069.
Pełny tekst źródłaTaba, Adib, Zabihollah Ahmadi, Aarsh Patel, Parvin Fathi-Hafshejani, Seungjong Lee, Nima Shamsaei i Masoud Mahjouri-Samani. "Dry printing electronics on biodegradable papers". W Nanoscale and Quantum Materials: From Synthesis and Laser Processing to Applications 2023, redaktorzy Andrei V. Kabashin, Maria Farsari i Masoud Mahjouri-Samani. SPIE, 2023. http://dx.doi.org/10.1117/12.2650717.
Pełny tekst źródłaLu, Yanfeng, Morteza Vatani, Ho-Chan Kim, Rae-Chan Lee i Jae-Won Choi. "Development of Direct Printing/Curing Process for 3D Structural Electronics". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63068.
Pełny tekst źródłaDelaporte, Ph, A. Ainsebaa, A. P. Alloncle, M. Benetti, C. Boutopoulos, D. Cannata, F. Di Pietrantonio i in. "Applications of laser printing for organic electronics". W SPIE LASE, redaktorzy Xianfan Xu, Guido Hennig, Yoshiki Nakata i Stephan W. Roth. SPIE, 2013. http://dx.doi.org/10.1117/12.2004062.
Pełny tekst źródłaBower, Christopher A., Etienne Menard, Joseph Carr i John A. Rogers. "3-D Heterogeneous Electronics by Transfer Printing". W 2007 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA). IEEE, 2007. http://dx.doi.org/10.1109/vtsa.2007.378922.
Pełny tekst źródłaWang, Lei, i Jing Liu. "Liquid Metal Inks for Flexible Electronics and 3D Printing: A Review". W ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37993.
Pełny tekst źródłaRaporty organizacyjne na temat "Electronics Printing"
Forrest, Stephen R. Direct Printing of Organic Electronics at the Nanometer Scale. Fort Belvoir, VA: Defense Technical Information Center, luty 2006. http://dx.doi.org/10.21236/ada457753.
Pełny tekst źródłaSpano, Michael. Electronics & 3D printing for the Modern Chemical Biology Laboratory. Office of Scientific and Technical Information (OSTI), kwiecień 2023. http://dx.doi.org/10.2172/1969226.
Pełny tekst źródłaHudson, Tracy D., i Carrie D. Hill. Three-Dimensional (3-D) Plastic Part Extrusion And Conductive Ink Printing For Flexible Electronics. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2012. http://dx.doi.org/10.21236/ada559396.
Pełny tekst źródłaGaponenko, Artiom, i Andrey Golovin. Electronic magazine with rating system of an estimation of individual and collective work of students. Science and Innovation Center Publishing House, październik 2017. http://dx.doi.org/10.12731/er0043.06102017.
Pełny tekst źródła