Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Electronic Transport Properties -Graphene.

Książki na temat „Electronic Transport Properties -Graphene”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych książek naukowych na temat „Electronic Transport Properties -Graphene”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.

1

1946-, Zabel H., Solin S. A. 1942- i Doll G. L, red. Graphite intercalation compounds II: Transport and electronic properties. Berlin: Springer-Verlag, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zabel, Hartmut. Graphite Intercalation Compounds II: Transport and Electronic Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Wallbank, John R. Electronic Properties of Graphene Heterostructures with Hexagonal Crystals. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07722-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

service), SpringerLink (Online, red. Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

T, Grahn H., red. Semiconductor superlattices: Growth and electronic properties. Singapore: World Scientific, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Sabathil, Matthias. Opto-electronic and quantum transport properties of semiconductor nanostructures. Garching: Verein zur Förderung des Walter Schottky Instituts der Technischen Universität München, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Lui, Chun Hung. Investigations of the electronic, vibrational and structural properties of single and few-layer graphene. [New York, N.Y.?]: [publisher not identified], 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Linjun, Wang, Song Chenchen i SpringerLink (Online service), red. Theory of Charge Transport in Carbon Electronic Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Madelung, O., U. Rössler i M. Schulz, red. Group IV Elements, IV-IV and III-V Compounds. Part b - Electronic, Transport, Optical and Other Properties. Berlin/Heidelberg: Springer-Verlag, 2002. http://dx.doi.org/10.1007/b80447.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Graphite Intercalation Compounds II: Transport and Electronic Properties. Springer, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Zabel, H. Graphite Intercalation Compounds II: Transport and Electronic Properties (Springer Series in Materials Science). Springer, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Narlikar, A. V., i Y. Y. Fu, red. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.001.0001.

Pełny tekst źródła
Streszczenie:
This Handbook consolidates some of the major scientific and technological achievements in different aspects of the field of nanoscience and technology. It consists of theoretical papers, many of which are linked with current and future nanodevices, molecular-based materials and junctions (including Josephson nanocontacts). Self-organization of nanoparticles, atomic chains, and nanostructures at surfaces are further described in detail. Topics include: a unified view of nanoelectronic devices; electronic and transport properties of doped silicon nanowires; quasi-ballistic electron transport in atomic wires; thermal transport of small systems; patterns and pathways in nanoparticle self-organization; nanotribology; and the electronic structure of epitaxial graphene. The volume also explores quantum-theoretical approaches to proteins and nucleic acids; magnetoresistive phenomena in nanoscale magnetic contacts; novel superconducting states in nanoscale superconductors; left-handed metamaterials; correlated electron transport in molecular junctions; spin currents in semiconductor nanostructures; and disorder-induced electron localization in molecular-based materials.
Style APA, Harvard, Vancouver, ISO itp.
13

Enoki, Toshiaki, Morinobu Endo i Masatsugu Suzuki. Graphite Intercalation Compounds and Applications. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195128277.001.0001.

Pełny tekst źródła
Streszczenie:
Graphite intercalation compounds are a new class of electronic materials that are classified as graphite-based host guest systems. They have specific structural features based on the alternating stacking of graphite and guest intercalate sheets. The electronic structures show two-dimensional metallic properties with a large variety of features including superconductivity. They are also interesting from the point of two-dimensional magnetic systems. This book presents the synthesis, crystal structures, phase transitions, lattice dynamics, electronic structures, electron transport properties, magnetic properties, surface phenomena, and applications of graphite intercalation compounds. The applications covered include batteries, highly conductive graphite fibers, exfoliated graphite and intercalated fullerenes and nanotubes.
Style APA, Harvard, Vancouver, ISO itp.
14

Electronic and Thermal Properties of Graphene. MDPI, 2020. http://dx.doi.org/10.3390/books978-3-03936-401-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Zhan, Hualin. Graphene-Electrolyte Interfaces: Electronic Properties and Applications. Jenny Stanford Publishing, 2020.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Zhan, Hualin. Graphene-Electrolyte Interfaces: Electronic Properties and Applications. Jenny Stanford Publishing, 2020.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Zhan, Hualin. Graphene-Electrolyte Interfaces: Electronic Properties and Applications. Taylor & Francis Group, 2020.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Zhan, Hualin. Graphene-Electrolyte Interfaces: Electronic Properties and Applications. Jenny Stanford Publishing, 2020.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Zhan, Hualin. Graphene-Electrolyte Interfaces: Electronic Properties and Applications. Jenny Stanford Publishing, 2020.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Ngoc Thanh Thuy, Tran, Shih-Yang Lin, Chiun-Yan Lin i Ming-Fa Lin. Geometric and Electronic Properties of Graphene-Related Systems. CRC Press, 2017. http://dx.doi.org/10.1201/b22450.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Electronic Properties of Graphene Heterostructures with Hexagonal Crystals. Springer, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Wallbank, John. Electronic Properties of Graphene Heterostructures with Hexagonal Crystals. Springer International Publishing AG, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Wallbank, John R. Electronic Properties of Graphene Heterostructures with Hexagonal Crystals. Springer, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Raza, Hassan. Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications. Springer, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Raza, Hassan. Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications. Springer Berlin / Heidelberg, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Lin, Ming-Fa, Chiun-Yan Lin, Ngoc Thanh Thuy Tran i Shih-Yang Lin. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes. Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Lin, Ming-Fa, Chiun-Yan Lin, Ngoc Thanh Thuy Tran i Shih-Yang Lin. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes. Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes. Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Lin, Ming-Fa, Chiun-Yan Lin, Ngoc Thanh Thuy Tran i Shih-Yang Lin. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes. Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Lin, Ming-Fa, Chiun-Yan Lin, Ngoc Thanh Thuy Tran i Shih-Yang Lin. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes. Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Torres, Luis E. F. Foa, Stephan Roche i Jean-Christophe Charlier. Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport. University of Cambridge ESOL Examinations, 2020.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Williams, James Ryan. Electronic transport in graphene: P-n junctions, shot noise, and nanoribbons. 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Luis E. F. Foa Torres, Stephan Roche i Jean-Christophe Charlier. Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport. Cambridge University Press, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Luis E. F. Foa Torres, Stephan Roche i Jean-Christophe Charlier. Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport. Cambridge University Press, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

(Contributor), S. Adachi, R. Blachnik (Contributor), R. P. Devaty (Contributor), F. Fuchs (Contributor), A. Hangleiter (Contributor), W. Kulisch (Contributor), Y. Kumashiro (Contributor), B. K. Meyer (Contributor), R. Sauer (Contributor) i U. Rössler (Editor), red. Electronic, Transport, Optical and Other Properties (Landolt-Bornstein). Springer, 2002.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Fernandez-Serra, M. V., i X. Blase. Electronic and transport properties of doped silicon nanowires. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.2.

Pełny tekst źródła
Streszczenie:
This article describes a number of theoretical works and methods dedicated to the analysis of the atomic and electronic structure, doping properties and transport characteristics of silicon nanowires (SiNWs). The goal is to show how quantum confinement and dimensionality effects can intrinsically change the behavior of SiNWs as compared to their bulk and thin film counterparts. The article begins with a review of work done on surface reconstructions and electronic structure of SiNWs as a function of system doping and passivation. It then considers the problem of doping in SiNWs as well as the methodology typically used to analyze the problems of transport. It also discusses the electronic transport properties of SiNWs as a function of dopant type, along with their chemical functionalization. Finally, it demonstrates how surface dangling-bond defects trap the impurities in SiNWs and neutralize them.
Style APA, Harvard, Vancouver, ISO itp.
37

Li, Jianzhong. Electronic Optical and Transport Properties of Widegap II-VI Semiconductors. Dissertation Discovery Company, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Li, Jianzhong. Electronic Optical and Transport Properties of Widegap II-VI Semiconductors. Dissertation Discovery Company, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Andriotis, A. N., R. M. Sheetz, E. Richter i M. Menon. Structural, electronic, magnetic, and transport properties of carbon-fullerene-based polymers. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.21.

Pełny tekst źródła
Streszczenie:
This article discusses the structural, electronic, magnetic, and transport properties of carbon-fullerene-based polymers. In particular, it examines the defect-induced ferromagnetism of the C60-based polymers and its analog in the case of non-traditional inorganic materials. It first reviews the computational methods currently used in the literature, highlighting the pros and cons of each one of them. It then considers the defects associated with the ferromagnetism of the C60-based polymers, namely carbon vacancies, the 2 + 2 cycloaddition bonds and impurity atoms, and their effect on the electronic structure. It also evaluates the effect of codoping and goes on to describe the electronic, magnetic and transport properties of the rhombohedral C60-polymer. Finally, it looks at the origin of magnetic coupling among the magnetic moments in the rhombohedral C60-polymer and provides further evidence for the analogy between the magnetism of the rhombohedral C60-polymer and zinc oxide.
Style APA, Harvard, Vancouver, ISO itp.
40

Kim, Ju H. Electronic and transport properties of the copper oxides: Fermi liquid description. 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

First-Principles Calculations In Real-Space Formalism: Electronic Configurations And Transport Properties Of Nanostructures. Imperial College Press, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Shuai, Zhigang, Linjun Wang i Chenchen Song. Theory of Charge Transport in Carbon Electronic Materials. Springer, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Shuai, Zhigang, Linjun Wang i Chenchen Song. Theory of Charge Transport in Carbon Electronic Materials. Springer, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Oshiyama, Atsushi, i Susumu Okada. Roles of shape and space in electronic properties of carbon nanomaterials. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.3.

Pełny tekst źródła
Streszczenie:
This article examines how internal space and boundary shapes affect the electronic properties of carbon nanomaterials by conducting total-energy electronic-structure calculations based on the density-functional theory. It first considers the existence of nanospace in carbon peapods before discussing boundaries in planar and tubular nanostructures. It also describes double-walled nanotubes, defects in carbon nanotubes, and hybrid structures of carbon nanotubes. Finally, it discusses the magnetic properties of zigzag-edged graphene ribbons and carbon nanotubes as well as the essential role of the edge state. The article shows that both space and peas (fullerenes) are decisive in electronic properties. In carbon peapods, nearly free-electron states occurring in the internal space hybridize with carbon orbitals and then make the peapod a new multicarrier system. The edge state belongs to a new class of electron states that is inherent to zigzag borders in hexagonally bonded networks.
Style APA, Harvard, Vancouver, ISO itp.
45

Transport in Semiconductor Mesoscopic. IOP Publishing Ltd, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Saito, R., A. Jorio, J. Jiang, K. Sasaki, G. Dresselhaus i M. S. Dresselhaus. Optical properties of carbon nanotubes and nanographene. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.1.

Pełny tekst źródła
Streszczenie:
This article examines the optical properties of single-wall carbon nanotubes (SWNTs) and nanographene. It begins with an overview of the shape of graphene and nanotubes, along wit the use of Raman spectroscopy to study the structure and exciton physics of SWNTs. It then considers the basic definition of a carbon nanotube and graphene, focusing on the crystal structure of graphene and the electronic structure of SWNTs, before describing the experimental setup for confocal resonance Raman spectroscopy. It also discusses the process of resonance Raman scattering, double-resonance Raman scattering, and the Raman signals of a SWNT as well as the dispersion behavior of second-order Raman modes, the doping effect on the Kohn anomaly of phonons, and the elastic scattering of electrons and photons. The article concludes with an analysis of excitons in SWNTs and outlines future directions for research.
Style APA, Harvard, Vancouver, ISO itp.
47

Succi, Sauro. Relativistic Lattice Boltzmann (RLB). Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0034.

Pełny tekst źródła
Streszczenie:
Relativistic hydrodynamics and kinetic theory play an increasing role in many areas of modern physics. Besides their traditional arenas, astrophysics and cosmology, relativistic fluids have recently attracted much attention also within the realm of high-energy and condensed matter physics, mostly in connection with quark-gluon plasmas experiments in heavy-ion colliders and electronic transport in graphene. This chapter describes the extension of the Lattice Boltzmann formalism to the case of relativistic fluids.
Style APA, Harvard, Vancouver, ISO itp.
48

Kamarás, Katalin, i Àron Pekker. Identification and separation of metallic and semiconducting carbon nanotubes. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.4.

Pełny tekst źródła
Streszczenie:
This article describes the identification and separation of metallic and semiconducting carbon nanotubes according to their electric properties. It first provides an overview of the electronic structure of nanotubes, focusing on how their metallic and semiconducting properties arise. It then considers the most widely used characterization techniques used in determining metallic or semiconducting behavior, including Raman spectroscopy and photoluminescence measurements. It also discusses specific chirality-selective growth techniques, physical postgrowth selection methods, enrichment by chirality-sensitive chemical reactions, and modification of transport properties without change in chirality. The article concludes with a review of some applications of metallic and semiconducting carbon nanotubes as transparent conductive coatings.
Style APA, Harvard, Vancouver, ISO itp.
49

Bi, J. F., i K. L. Teo. Nanoscale Ge1−xMnxTe ferromagnetic semiconductors. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.17.

Pełny tekst źródła
Streszczenie:
This article discusses the structure characterizations, magnetic and transport behaviors of the nanoscale ferromagnetic semiconductors Ge1-xMnxTe grown by molecular beam epitaxy with various manganese compositions x ranging from 0.14 to 0.98. After providing an overview of the growth procedure and characterization, the article analyzes the structures of the Ge1-xMnxTe system using X-ray diffraction and high-resolution transmission electron microscopy. It then considers the optical, magnetic and transport properties of the semiconductors and shows that the crystal quality is degraded and the proportion of amorphous phase increases with increasing Mn composition. Nanoclusters and nanoscale grains can be observed when x > 0.24, which greatly affect their magnetic and electronic properties. The magnetic anisotropy is weakened due to different orientations of the clusters embedded in the GeTe host. An anomalous Hall effect is also observed in the samples, which can be attributed to extrinsic skew scattering.
Style APA, Harvard, Vancouver, ISO itp.
50

Narlikar, A. V., i Y. Y. Fu, red. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.001.0001.

Pełny tekst źródła
Streszczenie:
This Handbook presents important developments in the field of nanoscience and technology, focusing on the advances made with a host of nanomaterials including DNA and protein-based nanostructures. Topics include: optical properties of carbon nanotubes and nanographene; defects and disorder in carbon nanotubes; roles of shape and space in electronic properties of carbon nanomaterials; size-dependent phase transitions and phase reversal at the nanoscale; scanning transmission electron microscopy of nanostructures; the use of microspectroscopy to discriminate nanomolecular cellular alterations in biomedical research; holographic laser processing for three-dimensional photonic lattices; and nanoanalysis of materials using near-field Raman spectroscopy. The volume also explores new phenomena in the nanospace of single-wall carbon nanotubes; ZnO wide-bandgap semiconductor nanostructures; selective self-assembly of semi-metal straight and branched nanorods on inert substrates; nanostructured crystals and nanocrystalline zeolites; unusual properties of nanoscale ferroelectrics; structural, electronic, magnetic, and transport properties of carbon-fullerene-based polymers; fabrication and characterization of magnetic nanowires; and properties and potential of protein-DNA conjugates for analytic applications.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii