Gotowa bibliografia na temat „Electronic Structure - Functional Materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Electronic Structure - Functional Materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Electronic Structure - Functional Materials"
Gu, Lin. "Structure and electronic structure of functional materials under symmetric breaking". Microscopy and Microanalysis 25, S2 (sierpień 2019): 2062–63. http://dx.doi.org/10.1017/s1431927619011048.
Pełny tekst źródłaBilal, M., S. Jalali-Asadabadi, Rashid Ahmad i Iftikhar Ahmad. "Electronic Properties of Antiperovskite Materials from State-of-the-Art Density Functional Theory". Journal of Chemistry 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/495131.
Pełny tekst źródłaMOLENDA, JANINA, i JACEK MARZEC. "FUNCTIONAL CATHODE MATERIALS FOR Li-ION BATTERIES — PART III: POTENTIAL CATHODE MATERIALS LixNi1-y-zCoyMnzO2 AND LiMn2O4". Functional Materials Letters 02, nr 01 (marzec 2009): 1–7. http://dx.doi.org/10.1142/s1793604709000545.
Pełny tekst źródłaChkhartishvili, Levan. "On Semi-Classical Approach to Materials Electronic Structure". Journal of Material Science and Technology Research 8 (30.11.2021): 41–49. http://dx.doi.org/10.31875/2410-4701.2021.08.6.
Pełny tekst źródłaZhang, Min-Ye, i Hong Jiang. "Density-functional theory methods for electronic band structure properties of materials". SCIENTIA SINICA Chimica 50, nr 10 (29.09.2020): 1344–62. http://dx.doi.org/10.1360/ssc-2020-0142.
Pełny tekst źródłaRocca, Dario, Ali Abboud, Ganapathy Vaitheeswaran i Sébastien Lebègue. "Two-dimensional silicon and carbon monochalcogenides with the structure of phosphorene". Beilstein Journal of Nanotechnology 8 (29.06.2017): 1338–44. http://dx.doi.org/10.3762/bjnano.8.135.
Pełny tekst źródłaMOLENDA, JANINA, i JACEK MARZEC. "FUNCTIONAL CATHODE MATERIALS FOR Li-ION BATTERIES — PART I: FUNDAMENTALS". Functional Materials Letters 01, nr 02 (wrzesień 2008): 91–95. http://dx.doi.org/10.1142/s1793604708000174.
Pełny tekst źródłaHosokawa, Shinya. "The Structure of Non‐Crystalline Materials and Chalcogenide Functional Materials". physica status solidi (b) 257, nr 11 (listopad 2020): 2000530. http://dx.doi.org/10.1002/pssb.202000530.
Pełny tekst źródłaNieminen, Risto M. "Developments in the density-functional theory of electronic structure". Current Opinion in Solid State and Materials Science 4, nr 6 (grudzień 1999): 493–98. http://dx.doi.org/10.1016/s1359-0286(99)00050-9.
Pełny tekst źródłaYoun, Yungsik, Kwanwook Jung, Younjoo Lee, Soohyung Park, Hyunbok Lee i Yeonjin Yi. "Electronic Structures of Nucleosides as Promising Functional Materials for Electronic Devices". Journal of Physical Chemistry C 121, nr 23 (6.06.2017): 12750–56. http://dx.doi.org/10.1021/acs.jpcc.7b01746.
Pełny tekst źródłaRozprawy doktorskie na temat "Electronic Structure - Functional Materials"
Östlin, Andreas. "Electronic structure studies and method development for complex materials". Doctoral thesis, KTH, Tillämpad materialfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-167109.
Pełny tekst źródłaQC 20150522
Wang, Baochang. "Electronic Structure and Optical Properties of Solar Energy Materials". Doctoral thesis, KTH, Flerskalig materialmodellering, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145625.
Pełny tekst źródłaQC 20140603
Bhandari, Srijana. "AN ELECTRONIC STRUCTURE APPROACH TO UNDERSTAND CHARGE TRANSFERAND TRANSPORT IN ORGANIC SEMICONDUCTING MATERIALS". Kent State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=kent1606836665551399.
Pełny tekst źródłaLu, Haichang. "Electronic structure, defect formation and passivation of 2D materials". Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/284926.
Pełny tekst źródłaZhang, Chunmei. "Computational discovery and design of novel materials from electronic structure engineering". Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/149858/1/Chunmei_Zhang_Thesis.pdf.
Pełny tekst źródłaRamzan, Muhammad. "Structural, Electronic and Mechanical Properties of Advanced Functional Materials". Doctoral thesis, Uppsala universitet, Materialteori, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-205243.
Pełny tekst źródłaHansson, Anders. "Electronic Structure and Transport Properties of Carbon Based Materials". Doctoral thesis, Linköpings universitet, Beräkningsfysik, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7544.
Pełny tekst źródłaLi, Zhi. "Electronic Structure Characterization of Hybrid Materials". Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5060.
Pełny tekst źródłaDziekan, Thomas. "Electronic Transport in Strained Materials". Doctoral thesis, Uppsala University, Department of Physics and Materials Science, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8471.
Pełny tekst źródłaIn this thesis the conductivity of strained materials has been investigated using density functional theory and a semiclassical transport theory based on the Boltzmann equation.
In transition metals trends are reproduced without adjustable parameters. The introduction of one temperature dependent cross section allowed the reproduction of resistivity trends between 10 and 1000K.
The effect of strain on transition metals in bcc and fcc structure was studied deforming the unit cell along the tetragonal deformation path. The anisotropy of the conductivity varied on wide range of the c/a-ratio. The orbitals at the Fermi level determined the principal behavior. Pairs of elements with permutated number of electrons and holes in the 4d band showed similar behavior. The concept of the tetragonal deformation was also applied on semiconductors.
The deformation of Vanadium in X/V superlattices (X=Cr,~Fe,~Mo) due to Hydrogen loading depends on the properties of X. It was found that counteracting effects due to the presence of Hydrogen influence the conductivity.
It is shown that a small magnetic moment of the V host reduces the hydrogen solubility. Depending on the magnitude of the tetragonal distortion of V, the hydrogen dissolution becomes favored for larger moments.
Finally, extra charge filling of the bandstructure of Cr and Mo decreases the Fermi velocity and increases the density of states at the Fermi energy.
Baum, Zachary John. "Reactivity of Tetraborylmethanes and Electronic Structure Calculations of Dimensionally Reduced Materials". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1531736836448112.
Pełny tekst źródłaKsiążki na temat "Electronic Structure - Functional Materials"
Michael, Springborg, red. Density-functional methods in chemistry and materials science. Chichester: Wiley, 1997.
Znajdź pełny tekst źródłaKakeshita, Tomoyuki. Progress in Advanced Structural and Functional Materials Design. Tokyo: Springer Japan, 2013.
Znajdź pełny tekst źródłaElectronic structure of materials. Oxford: Clarendon Press, 1993.
Znajdź pełny tekst źródłaPlanes, Antoni, Lluís Mañosa i Avadh Saxena, red. Magnetism and Structure in Functional Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-31631-0.
Pełny tekst źródłaPlanes, Antoni. Magnetism and structure in functional materials. Berlin [u.a.]: Springer, 2010.
Znajdź pełny tekst źródłaSen, K. D. Statistical complexity: Applications in electronic structure. Dordrecht: Springer, 2011.
Znajdź pełny tekst źródła1934-, Grasso Vincenzo, red. Electronic structure and electronic transitions in layered materials. Dordrecht, [Netherlands]: D. Reidel, 1986.
Znajdź pełny tekst źródłaGrasso, Vincenzo, red. Electronic Structure and Electronic Transitions in Layered Materials. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4542-5.
Pełny tekst źródłaAnisimov, Vladimir, i Yuri Izyumov. Electronic Structure of Strongly Correlated Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04826-5.
Pełny tekst źródłaGoedecker, S. Low complexity algorithms for density functional electronic structure calculations. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1993.
Znajdź pełny tekst źródłaCzęści książek na temat "Electronic Structure - Functional Materials"
Nakatani, Naoki, Jia-Jia Zheng i Shigeyoshi Sakaki. "Approach of Electronic Structure Calculations to Crystal". W The Materials Research Society Series, 209–55. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0260-6_11.
Pełny tekst źródłaSankir, Nurdan Demirci, Erkan Aydin, Esma Ugur i Mehmet Sankir. "Spray Pyrolysis of Nano-Structured Optical and Electronic Materials". W Advanced Functional Materials, 127–81. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118998977.ch3.
Pełny tekst źródłaWang, Z. L., i Z. C. Kang. "Electron Crystallography for Structure Analysis". W Functional and Smart Materials, 261–339. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5367-0_7.
Pełny tekst źródłaSTEIMER, C., H. DIEKER, D. WAMWANGI, W. WELNIC, R. DETEMPLE i M. WUTTIG. "OPTICAL AND ELECTRONIC DATA STORAGE WITH PHASE CHANGE MATERIALS: FROM CRYSTAL STRUCTURES TO KINETICS". W Functional Properties of Nanostructured Materials, 449–54. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4594-8_42.
Pełny tekst źródłaPottker, Walmir E., Patricia de la Presa, Mateus A. Gonçalves, Teodorico C. Ramalho, Antonio Hernando i Felipe A. La Porta. "Nanocrystalline Spinel Manganese Ferrite MnFe2O4: Synthesis, Electronic Structure, and Evaluation of Their Magnetic Hyperthermia Applications". W Functional Properties of Advanced Engineering Materials and Biomolecules, 335–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62226-8_12.
Pełny tekst źródłaAndreoni, Wanda, i Paolo Giannozzi. "Structural and Electronic Properties of C60 and C60 Derivatives in the Solid Phases: Calculations Based on Density-Functional Theory". W Physics and Chemistry of Materials with Low-Dimensional Structures, 291–329. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4038-6_8.
Pełny tekst źródłaUddin, M. Jasim, David O. Olawale, Jin Yan, Justin Moore i Okenwa O. I. Okoli. "Functional Triboluminescent Nanophase for Use in Advanced Structural Materials: A Smart Premise with Molecular and Electronic Definition". W Triboluminescence, 125–45. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-38842-7_6.
Pełny tekst źródłaRoduner, Emil. "Electronic Structure". W Nanoscopic Materials, 41–80. Cambridge: Royal Society of Chemistry, 2007. http://dx.doi.org/10.1039/9781847557636-00041.
Pełny tekst źródłaWarnes, L. A. A. "The Structure of Solids". W Electronic Materials, 1–31. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-6893-3_1.
Pełny tekst źródłaWarnes, L. A. A. "The Structure of Solids". W Electronic Materials, 1–31. London: Macmillan Education UK, 1990. http://dx.doi.org/10.1007/978-1-349-21045-9_1.
Pełny tekst źródłaStreszczenia konferencji na temat "Electronic Structure - Functional Materials"
Patel, A. R. "Exploring Electronic Structure and Optical Properties of 2D Monolayer As2S3 by First-Principle’s Calculation". W Functional Materials and Applied Physics. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901878-8.
Pełny tekst źródłaPatel, V. R. "Structural, Electronic and Optical Properties of 2D Monolayer and Bilayer CoO2". W Functional Materials and Applied Physics. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901878-6.
Pełny tekst źródłaKumar, S. "Theoretical Investigation of Ballistic Electron Transport in Au and Ag Nanoribbons". W Functional Materials and Applied Physics. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901878-5.
Pełny tekst źródłaHoisie, Adolfy, Stefan Goedecker i Jurg Hutter. "Electronic structure of materials using self-interaction corrected density functional theory". W the 1996 ACM/IEEE conference. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/369028.369132.
Pełny tekst źródłaGAGLIARDI, LAURA, i CHRISTOPHER J. CRAMER. "MODELLING METAL–ORGANIC FRAMEWORKS AND OTHER FUNCTIONAL MATERIALS WITH ELECTRONIC STRUCTURE THEORIES". W 25th Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2021. http://dx.doi.org/10.1142/9789811228216_0010.
Pełny tekst źródłaMishra, P. "Prediction of Electronic and Optical Properties of Boron Selenide BSe (2H) monolayer based on First-Principles". W Functional Materials and Applied Physics. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901878-9.
Pełny tekst źródłaSingh, Birender, i Pradeep Kumar. "Density functional study of ACa2Fe4As4F2 (A = K, Rb): Electronic structure, unconventional superconductors". W NATIONAL CONFERENCE ON ADVANCED MATERIALS AND NANOTECHNOLOGY - 2018: AMN-2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5052071.
Pełny tekst źródłaSatish, D. "Ionization Potentials of Nucleic Acid Intercalators". W Functional Materials and Applied Physics. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901878-12.
Pełny tekst źródłaShukla, V. "The Performance Study of CIGS Solar Cell by SCAPS-1D Simulator". W Functional Materials and Applied Physics. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901878-10.
Pełny tekst źródłaWu, Weigen. "Density Functional Theory Calculation on Electronic Structure and Optical Properties of Copper Doped SnO2". W 2015 International Conference on Materials, Environmental and Biological Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/mebe-15.2015.123.
Pełny tekst źródłaRaporty organizacyjne na temat "Electronic Structure - Functional Materials"
Rez, Peter. Electronic Structure of Lithium Battery Materials. Office of Scientific and Technical Information (OSTI), grudzień 2007. http://dx.doi.org/10.2172/920363.
Pełny tekst źródłaCar, Roberto. Electronic Structure Theory and Novel Materials. Office of Scientific and Technical Information (OSTI), kwiecień 2022. http://dx.doi.org/10.2172/1860622.
Pełny tekst źródłaRobertson, Ian M., i Duane D. Johnson. Reversible Hydrogen Storage Materials – Structure, Chemistry, and Electronic Structure. Office of Scientific and Technical Information (OSTI), czerwiec 2014. http://dx.doi.org/10.2172/1134549.
Pełny tekst źródłaJoyce, John J. Electronic Structure of Plutonium Materials from Photoemission. Office of Scientific and Technical Information (OSTI), luty 2016. http://dx.doi.org/10.2172/1239080.
Pełny tekst źródłaIsaacs, Eric B. Electronic structure and phase stability of strongly correlated electron materials. Office of Scientific and Technical Information (OSTI), maj 2016. http://dx.doi.org/10.2172/1477791.
Pełny tekst źródłaFreeman, Arthur J., Oleg Y. Kontsevoi, Yuri N. Gornostyrev i Nadezhda I. Medvedeva. Fundamental Electronic Structure Characteristics and Mechanical Behavior of Aerospace Materials. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2008. http://dx.doi.org/10.21236/ada480633.
Pełny tekst źródłaNelson, A., J. Dunn, T. van Buuren i R. Smith. Direct Characterization of the Electronic Structure of Shocked and Heated Materials. Office of Scientific and Technical Information (OSTI), luty 2004. http://dx.doi.org/10.2172/15009787.
Pełny tekst źródłaWilliams, Timothy J., Ramesh Balakrishnan, Volker Blum, William P. Huhn, Chi Liu, David Mitzi, Yosuke Kanai i in. Electronic Structure-Based Discovery of Hybrid Photovoltaic Materials on Next-Generation HPC Platforms. Office of Scientific and Technical Information (OSTI), wrzesień 2017. http://dx.doi.org/10.2172/1490826.
Pełny tekst źródłaMartins, Henrique, Giuseppina Conti, Lorenz Falling, Arunothai Rattanachata, Qiyang Lu, Laurent Nicolai, I. Cordova i in. Correlating tomographic chemical inhomogeneity and low energy electronic structure in layered quantum materials. Office of Scientific and Technical Information (OSTI), marzec 2023. http://dx.doi.org/10.2172/1963495.
Pełny tekst źródłaZuo, Zhiqi. A theoretical study of the electronic structure of Invar Fe*3Pt and related materials. Office of Scientific and Technical Information (OSTI), styczeń 1997. http://dx.doi.org/10.2172/453769.
Pełny tekst źródła