Gotowa bibliografia na temat „Electronic Structure - Chemical Hydrogen Storage”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Electronic Structure - Chemical Hydrogen Storage”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Electronic Structure - Chemical Hydrogen Storage"
Cai, Yingxiang, Jiamin Xiong, Yabo Liu i Xuechun Xu. "Electronic structure and chemical hydrogen storage of a porous sp3 tetragonal BC2N compound". Journal of Alloys and Compounds 724 (listopad 2017): 229–33. http://dx.doi.org/10.1016/j.jallcom.2017.06.343.
Pełny tekst źródłaSzarek, Pawel, Kouhei Watanabe, Kazuhide Ichikawa i Akitomo Tachibana. "Electronic Stress Tensor Study of Aluminum Nanostructures for Hydrogen Storage". Materials Science Forum 638-642 (styczeń 2010): 1137–42. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.1137.
Pełny tekst źródłaIchikawa, Kazuhide, Yuji Ikeda, Ryo Terashima i Akitomo Tachibana. "Aluminum Hydride Clusters as Hydrogen Storage Materials and their Electronic Stress Tensor Analysis". Materials Science Forum 706-709 (styczeń 2012): 1539–44. http://dx.doi.org/10.4028/www.scientific.net/msf.706-709.1539.
Pełny tekst źródłaMorinaga, Masahiko, i Hiroshi Yukawa. "Characteristics of Electronic Structures and Chemical Bonding in Hydrogen-Storage Compounds". Materials Science Forum 426-432 (sierpień 2003): 2237–42. http://dx.doi.org/10.4028/www.scientific.net/msf.426-432.2237.
Pełny tekst źródłaSeo, Okkyun, Jaemyung Kim, Akhil Tayal, Chulho Song, L. S. R. Kumara, Shun Dekura, Hirokazu Kobayashi, Hiroshi Kitagawa i Osami Sakata. "The relationship between crystalline disorder and electronic structure of Pd nanoparticles and their hydrogen storage properties". RSC Advances 9, nr 37 (2019): 21311–17. http://dx.doi.org/10.1039/c9ra02942g.
Pełny tekst źródłaCui, Hong, Ying Zhang, Weizhi Tian, Yazhou Wang, Tong Liu, Yunjian Chen, Pengyue Shan i Hongkuan Yuan. "A study on hydrogen storage performance of Ti decorated vacancies graphene structure on the first principle". RSC Advances 11, nr 23 (2021): 13912–18. http://dx.doi.org/10.1039/d1ra00214g.
Pełny tekst źródłaGao, Peng, Zonghang Liu, Jiefeng Diao, Jiaao Wang, Jiwen Li, Yuebin Tan, Guangtong Hai i Graeme Henkelman. "Calculated Outstanding Energy-Storage Media by Aluminum-Decorated Carbon Nitride (g-C3N4): Elucidating the Synergistic Effects of Electronic Structure Tuning and Localized Electron Redistribution". Crystals 13, nr 4 (11.04.2023): 655. http://dx.doi.org/10.3390/cryst13040655.
Pełny tekst źródłaZhang, Jun-Jun, Meng-Yang Li, Xiang Li, Wei-Wei Bao, Chang-Qing Jin, Xiao-Hua Feng, Ge Liu, Chun-Ming Yang i Nan-Nan Zhang. "Chromium-Modified Ultrathin CoFe LDH as High-Efficiency Electrode for Hydrogen Evolution Reaction". Nanomaterials 12, nr 7 (6.04.2022): 1227. http://dx.doi.org/10.3390/nano12071227.
Pełny tekst źródłaGao, Peng, Xihao Chen, Jiwen Li, Yue Wang, Ya Liao, Shichang Liao, Guangyu Zhu, Yuebin Tan i Fuqiang Zhai. "Computational Evaluation of Al-Decorated g-CN Nanostructures as High-Performance Hydrogen-Storage Media". Nanomaterials 12, nr 15 (27.07.2022): 2580. http://dx.doi.org/10.3390/nano12152580.
Pełny tekst źródłaSkryabina, N. E., Vladimir M. Pinyugzhanin i Daniel Fruchart. "Relationship between Micro-/Nano-Structure and Stress Development in TM-Doped Mg-Based Alloys Absorbing Hydrogen". Solid State Phenomena 194 (listopad 2012): 237–44. http://dx.doi.org/10.4028/www.scientific.net/ssp.194.237.
Pełny tekst źródłaRozprawy doktorskie na temat "Electronic Structure - Chemical Hydrogen Storage"
Torres, Escalona Javier. "Electronic properties study on hydrazines and nitriles complexed by Lewis acids. Towards chemical hydrogen storage". Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3051.
Pełny tekst źródłaWithin the problematic of the use of new non-polluting energies, hydrogen is one of the main green fuels of the future. Hydrazine borane derivatives are potentially interesting chemical hydrogen storage materials. Complexes between hydrazines or nitriles with boranes or alanes are the basis of this study. These compounds were synthesized in order to study their electronic structure before and after creation of the bond between the Lewis acids and bases. Ultraviolet Photoelectron Spectroscopy (UV-PES) is used as a main characterization tool, providing Ionization Energies (IE). The interpretation of the experimental results is supported by Quantum Chemical Calculations as ΔSCF+TD-DFT, OVGF, P3 and SAC-CI methods. Simulations and experiments by Flash Vacuum Thermolysis (FVT) were carried out on hydrogen release from hydrazine borane derivatives
Rai, Chaudhuri Anjana. "Electronic structure and bond energy trends in silicon-hydrogen and germanium-hydrogen bond activation by transition metals". Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184731.
Pełny tekst źródłaCulligan, Scott D. "The crystal chemistry and hydrogen storage properties of light metal borohydrides". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:5a27d358-6b0d-4287-8b5d-f18304533dde.
Pełny tekst źródłaNickels, Elizabeth Anne. "Structural and thermogravimetric studies of group I and II borohydrides". Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:f18f8f7c-1837-4b96-b4bb-5f964e93899c.
Pełny tekst źródłaRichard, Laura Amanda. "A study of the crystallographic, magnetic and electronic properties of selected ZrM2-H systems". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:276c59fe-cf45-42d2-a5a0-8c534c8b46bd.
Pełny tekst źródłaRamzan, Muhammad. "Structural, Electronic and Mechanical Properties of Advanced Functional Materials". Doctoral thesis, Uppsala universitet, Materialteori, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-205243.
Pełny tekst źródłaAndrieux, Jérome. "Stockage de l'hydrogène dans les borohydrures alcalins : hydrolyse du borohydrure de sodium". Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00654299.
Pełny tekst źródłaShen-DunLiang i 梁信惇. "The electrochemical properties of Mg2Ni hydrogen storage alloy with core-shell structure fabricated by mechanical alloying and chemical plating Ni". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/30005489409901059086.
Pełny tekst źródłaKsiążki na temat "Electronic Structure - Chemical Hydrogen Storage"
Rai, Dibya Prakash, red. Advanced Materials and Nano Systems: Theory and Experiment - Part 2. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150499611220201.
Pełny tekst źródłaCzęści książek na temat "Electronic Structure - Chemical Hydrogen Storage"
Lin, Yu Fang, Dongliang Zhao i Xin Lin Wang. "Alloying Effect on the Electronic Structure of LaNi5-Based Hydrogen Storage Alloys". W Materials Science Forum, 3123–26. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.3123.
Pełny tekst źródłaScerri, Eric R. "7. Electronic structure". W The Periodic Table: A Very Short Introduction, 85–98. Oxford University Press, 2019. http://dx.doi.org/10.1093/actrade/9780198842323.003.0007.
Pełny tekst źródłaHuang, Yingchong, Shuxuan Liu, Tuyuan Zhu, Chunyan Zhou, Zhanguo Jiang i Xuehui Gao. "Electrocatalytic Meralorganic Frameworks and OER Based on Metal-organic Frameworks and their Structure". W Advanced Catalysts Based on Metal-organic Frameworks (Part 2), 86–128. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815136029123010005.
Pełny tekst źródłaThakur, Vaishali, i Ekta Sharma. "Application of Carbonaceous Quantum dots in Energy Storage". W Carbonaceous Quantum Dots: Synthesis And Applications, 178–91. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815136265123010012.
Pełny tekst źródłaWysocka-Żołopa, Monika, Emilia Grądzka i Krzysztof Winkler. "Conducting Polymer 1-D Composites: Formation, Structure and Application". W Nanocomposite Materials [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102484.
Pełny tekst źródłaChemek, Mourad, Ali Mabrouk, Mourad Ben Braieck, Jany Wérry Ventirini i Alimi Kamel. "Synthesis, Experimental and Theoretical Investigations on the Optical and Electronic Properties of New Organic Active Layer for a New Generation of Organic Light-Emitting Diode". W Nanocomposite Materials for Biomedical and Energy Storage Applications. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.103807.
Pełny tekst źródłaSrivastava, Manish, Anjali Banger, Anamika Srivastava, Nirmala Kumari Jangid i Priy Brat Dwivedi. "Structure and Properties of Graphene and Chemically Modified Graphene Materials". W Graphene-based Carbocatalysts: Synthesis, Properties and Applications, 43–75. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815050899123010006.
Pełny tekst źródłaAdarakatti, Prashanth S., i Sumedha H. N. "MXenes based 2D nanostructures for supercapacitors". W Electrochemistry, 261–303. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781839169366-00261.
Pełny tekst źródłaKide Mengistu, Habtamu. "Abiotic and Biotic Stress Factors Affecting Storage of Legumes in Tropics". W Legumes Research - Volume 1. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.99413.
Pełny tekst źródłaShao, G. N. "Lanthanide-based Superconductor and its Applications". W Superconductors, 97–107. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644902110-5.
Pełny tekst źródłaStreszczenia konferencji na temat "Electronic Structure - Chemical Hydrogen Storage"
Pathak, Mansi, Abhijeet Gangan i Brahmananda Chakraborty. "Electronic structure and hydrogen storage capability of zirconium decorated graphyne". W DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5028963.
Pełny tekst źródłaDesnavi, Sameerah, Brahmananda Chakraborty i Lavanya M. Ramaniah. "First principles DFT investigation of yttrium-doped graphene: Electronic structure and hydrogen storage". W SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4873109.
Pełny tekst źródłaJain, Richa Naja, Brahmananda Chakraborty i Lavanya M. Ramaniah. "First principles DFT investigation of yttrium-decorated boron-nitride nanotube: Electronic structure and hydrogen storage". W NANOFORUM 2014. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4917756.
Pełny tekst źródłaDavis, Benjamin, Nitin Muralidharan, Cary Pint i Matthew R. Maschmann. "Electrically Addressable Hierarchical Carbon Nanotube Forests". W ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67226.
Pełny tekst źródłaFlak, Dorota, Mieczyslaw Rekas, Artur Braun i Antje Vollmer. "P2.4.8 Effect of the Titania Substitution on the Electronic Structure and Transport Properties of FSS-made Fe2O3 Nanoparticles for Hydrogen Sensing". W 14th International Meeting on Chemical Sensors - IMCS 2012. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2012. http://dx.doi.org/10.5162/imcs2012/p2.4.8.
Pełny tekst źródłaFukuyama, Seiji, Masaaki Imade i Kiyoshi Yokogawa. "Development of New Material Testing Apparatus in High-Pressure Hydrogen and Evaluation of Hydrogen Gas Embrittlement of Metals". W ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/pvp2007-26820.
Pełny tekst źródłaSmith, Kyle C., Peter D. Gilbert, Christopher S. Polster i Timothy Fisher. "Heat Conduction in Metal Hydride Nano-Particles". W ASME 2007 2nd Energy Nanotechnology International Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/enic2007-45037.
Pełny tekst źródłaYang, Jingbin, Yingrui Bai, Jinsheng Sun, Kaihe Lv, Jintang Wang, Liyao Dai, Qitao Zhang i Yuecheng Zhu. "Preparation of High Temperature Resistant High Strength Supramolecular Gels Based on Hydrophobic Association and Hydrogen Bonding and its Application in Formation Pluggingg". W SPE Western Regional Meeting. SPE, 2023. http://dx.doi.org/10.2118/213047-ms.
Pełny tekst źródłaYates, Luke, Ramez Cheaito, Aditya Sood, Zhe Cheng, Thomas Bougher, Mehdi Asheghi, Kenneth Goodson i in. "Investigation of the Heterogeneous Thermal Conductivity in Bulk CVD Diamond for Use in Electronics Thermal Management". W ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2017 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ipack2017-74163.
Pełny tekst źródłaHossain, Mohammad K., Md Mahmudur R. Chowdhury, Mahesh Hosur, Shaik Jeelani i Nydeia W. Bolden. "Enhanced Properties of Epoxy Composite Reinforced With Amino-Functionalized Graphene Nanoplatelets". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51483.
Pełny tekst źródłaRaporty organizacyjne na temat "Electronic Structure - Chemical Hydrogen Storage"
Robertson, Ian M., i Duane D. Johnson. Reversible Hydrogen Storage Materials – Structure, Chemistry, and Electronic Structure. Office of Scientific and Technical Information (OSTI), czerwiec 2014. http://dx.doi.org/10.2172/1134549.
Pełny tekst źródła