Gotowa bibliografia na temat „Electronic Structure Calculations - Computational Methods”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Electronic Structure Calculations - Computational Methods”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Electronic Structure Calculations - Computational Methods"
Wang, Lin-Wang. "Novel Computational Methods for Nanostructure Electronic Structure Calculations". Annual Review of Physical Chemistry 61, nr 1 (marzec 2010): 19–39. http://dx.doi.org/10.1146/annurev.physchem.012809.103344.
Pełny tekst źródłaZhang, Xin, Jinwei Zhu, Zaiwen Wen i Aihui Zhou. "Gradient Type Optimization Methods For Electronic Structure Calculations". SIAM Journal on Scientific Computing 36, nr 3 (styczeń 2014): C265—C289. http://dx.doi.org/10.1137/130932934.
Pełny tekst źródłaRichie, D. A., P. von Allmen, K. Hess i Richard M. Martin. "Electronic Structure Calculations Using An Adaptive Wavelet Basis". VLSI Design 8, nr 1-4 (1.01.1998): 159–63. http://dx.doi.org/10.1155/1998/62853.
Pełny tekst źródłaBarettin, D., S. Madsen, B. Lassen i M. Willatzen. "Computational Methods for Electromechanical Fields in Self-Assembled Quantum Dots". Communications in Computational Physics 11, nr 3 (marzec 2012): 797–830. http://dx.doi.org/10.4208/cicp.111110.110411a.
Pełny tekst źródłaZeng, Xiongzhi, Wei Hu, Xiao Zheng, Jin Zhao, Zhenyu Li i Jinlong Yang. "Computational characterization of nanosystems". Chinese Journal of Chemical Physics 35, nr 1 (luty 2022): 1–15. http://dx.doi.org/10.1063/1674-0068/cjcp2111233.
Pełny tekst źródłaBligaard, Thomas, Martin P. Andersson, Karsten W. Jacobsen, Hans L. Skriver, Claus H. Christensen i Jens K. Nørskov. "Electronic-Structure-Based Design of Ordered Alloys". MRS Bulletin 31, nr 12 (grudzień 2006): 986–90. http://dx.doi.org/10.1557/mrs2006.225.
Pełny tekst źródłaPototschnig, Johann V., Kenneth G. Dyall, Lucas Visscher i André Severo Pereira Gomes. "Electronic spectra of ytterbium fluoride from relativistic electronic structure calculations". Physical Chemistry Chemical Physics 23, nr 39 (2021): 22330–43. http://dx.doi.org/10.1039/d1cp03701c.
Pełny tekst źródłaStöhr, Martin, Troy Van Voorhis i Alexandre Tkatchenko. "Theory and practice of modeling van der Waals interactions in electronic-structure calculations". Chemical Society Reviews 48, nr 15 (2019): 4118–54. http://dx.doi.org/10.1039/c9cs00060g.
Pełny tekst źródłaBreczko, T., V. Barkaline i J. Tamuliene. "INVESTIGATION OF GEOMETRIC AND ELECTRONIC STRUCTURES OF HEUSLER ALLOYS: CUBIC AND TETRAGONAL LATTICES". EPH - International Journal of Applied Science 6, nr 1 (27.03.2020): 1–5. http://dx.doi.org/10.53555/eijas.v6i1.102.
Pełny tekst źródłaFujiki, Ryo, Toru Matsui, Yasuteru Shigeta, Haruyuki Nakano i Norio Yoshida. "Recent Developments of Computational Methods for pKa Prediction Based on Electronic Structure Theory with Solvation Models". J 4, nr 4 (10.12.2021): 849–64. http://dx.doi.org/10.3390/j4040058.
Pełny tekst źródłaRozprawy doktorskie na temat "Electronic Structure Calculations - Computational Methods"
Mak, Lora. "Computational approaches to protein structure and function : from 'Ab Initio' electronic structure calculations to 3D molecular structure description and comparison". Thesis, University of East Anglia, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443086.
Pełny tekst źródłaGorelov, Vitaly. "Quantum Monte Carlo methods for electronic structure calculations : application to hydrogen at extreme conditions". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASF002.
Pełny tekst źródłaThe hydrogen metallization problem posed almost 80 years ago, was named as the third open question in physics of the XXI century. Indeed, due to its lightness and reactivity, experimental information on high pressure hydrogen is limited and extremely difficult to obtain. Therefore, the development of accurate methods to guide experiments is essential. In this thesis, we focus on studying the electronic structure, including excited state phenomena, using quantum Monte Carlo (QMC) techniques. In particular, we develop a new method of computing energy gaps accompanied by an accurate treatment of the finite simulation cell error. We formally relate finite size error to the dielectric constant of the material. Before studying hydrogen, the new method is tested on crystalline silicon and carbon diamond, systems for which experimental information on the gap is available. Although finite-size corrected gap values for carbon and silicon are larger than the experimental ones, our results demonstrate that the bias due to the finite size supercell can be corrected for, so precise values in the thermodynamic limit can be obtained for small supercells without need for numerical extrapolation. As hydrogen is a very light material, the nuclear quantum effects are important. An accurate capturing of nuclear effects can be done within the Coupled Electron Ion Monte Carlo (CEIMC) method, a QMC-based first-principles simulation method. We use the results of CEIMC to discuss the thermal renormalization of electronic properties. We introduce a formal way of treating the electronic gap and band structure at a finite temperature within the adiabatic approximation and discuss the approximations that have to be made. We propose as well a novel way of renormalizing the optical properties at low temperature, which will be an improvement upon the commonly used semiclassical approximation. Finally, we apply all the methodological development of this thesis to study the metallization of solid and liquid hydrogen. We find that for ideal crystalline molecular hydrogen the QMC gap is in agreement with previous GW calculations. Treating nuclear zero point effects cause a large reduction in the gap (2 eV). Determining the crystalline structure of solid hydrogen is still an open problem. Depending on the structure, the fundamental indirect gap closes between 380 and 530 GPa for ideal crystals and 330–380 GPa for quantum crystals, which depends less on the crystalline symmetry. Beyond this pressure, the system enters into a bad metal phase where the density of states at the Fermi level increases with pressure up to 450–500 GPa when the direct gap closes. Our work partially supports the interpretation of recent experiments in high pressure hydrogen. However, the scenario where solid hydrogen metallization is accompanied by the structural change, for example, a molecular dissociation, can not be disproved. We also explore the possibility to use a multideterminant representation of excited states to model neutral excitations and compute the conductivity via the Kubo formula. We applied this methodology to ideal crystalline hydrogen and limited to the variational Monte Carlo level of the theory. For liquid hydrogen, the main finding is that the gap closure is continuous and coincides with the molecular dissociation transition. We were able to benchmark density functional theory (DFT) functionals based on the QMC density of states. When using the QMC renormalized Kohn-Sham eigenvalues to compute optical properties within the Kubo-Greenwood theory, we found that previously calculated theoretical optical absorption has a shift towards lower energies
Richard, Ryan. "Increasing the computational efficiency of ab initio methods with generalized many-body expansions". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385570237.
Pełny tekst źródłaLaury, Marie L. "Accurate and Reliable Prediction of Energetic and Spectroscopic Properties Via Electronic Structure Methods". Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc500071/.
Pełny tekst źródłaRajapakshe, Senanayake Asha. "ELECTRONIC STRUCTURE AND BONDING FACTORS OF TRANSITION METAL - PENTADIENYL AND (FLUOROALKYL)PHOSPHINE COMPLEXES: PHOTOELECTRON SPECTROSCOPY AND COMPUTATIONAL METHODS". Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1220%5F1%5Fm.pdf&type=application/pdf.
Pełny tekst źródłaBecker, Caroline [Verfasser], i Rainer [Akademischer Betreuer] Böckmann. "Development of computational methods for the prediction of protein structure, protein binding, and mutational effects using free energy calculations / Caroline Becker. Gutachter: Rainer Böckmann". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2014. http://d-nb.info/1054331456/34.
Pełny tekst źródłaDugan, Nazim. "Quantum Monte Carlo Methods For Fermionic Systems: Beyond The Fixed-node Approximation". Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612256/index.pdf.
Pełny tekst źródłaFlores, Livas José. "Computational and experimental studies of sp3-materials at high pressure". Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10127.
Pełny tekst źródłaWe present experimental and theoretical studies of sp3 materials, alkaline-earth-metal (AEM) disilicides, disilane (Si2H6) and carbon at high pressure. First, we study the AEM disilicides and in particular the case of a layered phase of BaSi2 which has an hexagonal structure with sp3 bonding of the silicon atoms. This electronic environment leads to a natural corrugated Si-sheets. Extensive ab initio calculations based on DFT guided the experimental research and permit explain how electronic and phonon properties are strongly affected by changes in the buckling of the silicon plans. We demonstrate experimentally and theoretically an enhancement of superconducting transition temperatures from 6 to 8.9 K when silicon planes flatten out in this structure. Second, we investigated the crystal phases of disilane at the megabar range of pressure. A novel metallic phase of disilane is proposed by using crystal structure prediction methods. The calculated transition temperatures yielding a superconducting Tc of around 20 K at 100 GPa and decreasing to 13 K at 220 GPa. These values are significantly smaller than previously predicted Tc’s and put serious drawbacks in the possibility of high-Tc superconductivity based on silicon-hydrogen systems. Third, we studied the sp3-carbon structures at high pressure through a systematic structure search. We found a new allotrope of carbon with Cmmm symmetry which we refer to as Z-carbon. This phase is predicted to be more stable than graphite for pressures above 10 GPa and is formed by sp3-bonds. Experimental and simulated XRD, Raman spectra suggest the existence of Z-carbon in micro-domains of graphite under pressure
Cankurtaran, Burak O. "Linear-scaling techniques for first principles calculations of stationary and dynamic systems". Thesis, Curtin University, 2010. http://hdl.handle.net/20.500.11937/24.
Pełny tekst źródłaLópez, Ríos Pablo. "Backflow and pairing wave function for quantum Monte Carlo methods". Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/288882.
Pełny tekst źródłaKsiążki na temat "Electronic Structure Calculations - Computational Methods"
Royal Society of Chemistry. Faraday Division., red. Molecular electronic structure calculations: Methods and applications. London: Royal Society of Chemistry, 1985.
Znajdź pełny tekst źródła1950-, Wilson S., red. Methods in computational chemistry. New York: Plenum, 1992.
Znajdź pełny tekst źródła1950-, Wilson S., red. Methods in computational chemistry. New York: Plenum, 1988.
Znajdź pełny tekst źródła1950-, Wilson S., red. Methods in computational chemistry. New York: Plenum, 1992.
Znajdź pełny tekst źródła1950-, Wilson S., red. Methods in computational chemistry. New York: Plenum Press, 1987.
Znajdź pełny tekst źródłaAlkauskas, Audrius. Advanced calculations for defects in materials: Electronic structure methods. Weinheim: Wiley-VCH, 2011.
Znajdź pełny tekst źródłaAEleen, Frisch, i Gaussian Inc, red. Exploring chemistry with electronic structure methods. Wyd. 2. Pittsburgh, PA: Gaussian, Inc., 1996.
Znajdź pełny tekst źródłaComputational methods for large systems: Electronic structure approaches for biotechnology and nanotechnology. Hoboken, N.J: Wiley, 2011.
Znajdź pełny tekst źródła1938-, Kumar Vijay, Andersen O. K, Mookerjee Abhijit 1946- i Working Group on "Disordered Alloys" (1992 : ICTP, Trieste, Italy), red. Lectures on Methods of electronic structure calculations: Proceedings of the Miniworkshop on "Methods of Electronic Structure Calculations" and Working Group on "Disordered Alloys" : ICTP, Trieste, Italy, 10 August-4 September 1992. Singapore: World Scientific, 1994.
Znajdź pełny tekst źródłaOlle, Eriksson, Andersson Per, Delin Anna, Grechnyev Oleksiy, Alouani Mebarek i SpringerLink (Online service), red. Full-Potential Electronic Structure Method: Energy and Force Calculations with Density Functional and Dynamical Mean Field Theory. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Electronic Structure Calculations - Computational Methods"
Fattebert, Jean-Luc. "Finite Difference Methods in Electronic Structure Calculations". W Encyclopedia of Applied and Computational Mathematics, 521–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_249.
Pełny tekst źródłaTemmerman, W. M., Z. Szotek, H. Winter i G. Y. Guo. "Computational Methods in Electronic Structure Calculations of Complex Solids". W Supercomputational Science, 287–317. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5820-6_23.
Pełny tekst źródłaKohn, Scott, John Weare, M. Elizabeth Ong i Scott Baden. "Software Abstractions and Computational Issues in Parallel Structured Adaptive Mesh Methods for Electronic Structure Calculations". W Structured Adaptive Mesh Refinement (SAMR) Grid Methods, 75–95. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1252-2_5.
Pełny tekst źródłaRubensson, Emanuel H., Elias Rudberg i Pawel Salek. "Methods for Hartree-Fock and Density Functional Theory Electronic Structure Calculations with Linearly Scaling Processor Time and Memory Usage". W Challenges and Advances in Computational Chemistry and Physics, 263–300. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2853-2_12.
Pełny tekst źródłaSchulz, Hannes, i Andreas Görling. "Toward a Comprehensive Treatment of Temperature in Electronic Structure Calculations: Non-zero-Temperature Hartree-Fock and Exact-Exchange Kohn-Sham Methods". W Lecture Notes in Computational Science and Engineering, 87–121. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04912-0_4.
Pełny tekst źródłaGrant, Ian P. "Relativistic Atomic Structure Calculations". W Methods in Computational Chemistry, 1–71. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0711-2_1.
Pełny tekst źródłaWilson, Stephen. "Relativistic Molecular Structure Calculations". W Methods in Computational Chemistry, 73–108. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0711-2_2.
Pełny tekst źródłaPyykkö, Pekka. "Semiempirical Relativistic Molecular Structure Calculations". W Methods in Computational Chemistry, 137–226. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0711-2_4.
Pełny tekst źródłaGötz, Andreas W. "Overview of Electronic Structure Methods". W Electronic Structure Calculations on Graphics Processing Units, 39–66. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118670712.ch3.
Pełny tekst źródłaKais, S., i R. Bleil. "Dimensional Renormalization For Electronic Structure Calculations". W New Methods in Quantum Theory, 55–70. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0227-5_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Electronic Structure Calculations - Computational Methods"
Wang, Lin-Wang, George Maroulis i Theodore E. Simos. "Linear Scaling Electronic Structure Calculations for Nanosystems with Tens of Thousands of Atoms". W COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING: Advances in Computational Science: Lectures presented at the International Conference on Computational Methods in Sciences and Engineering 2008 (ICCMSE 2008). AIP, 2009. http://dx.doi.org/10.1063/1.3225401.
Pełny tekst źródłaGuo, Qiong, Osama R. Bilal i Mahmoud I. Hussein. "A Fast Method for Electronic Band Structure Calculations". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65681.
Pełny tekst źródłaManohar, Prashant Uday, Sourav Pal, George Maroulis i Theodore E. Simos. "Constrained Variational Response to Fock-Space Multi-Reference Coupled-Cluster Theory: Formulation for Excited-State Electronic Structure Calculations and Some Pilot Applications". W Computational Methods in Science and Engineering. AIP, 2007. http://dx.doi.org/10.1063/1.2827017.
Pełny tekst źródłaImachi, Hiroto, Seiya Yokoyama, Takami Kaji, Yukiya Abe, Tomofumi Tada i Takeo Hoshi. "One-hundred-nm-scale electronic structure and transport calculations of organic polymers on the K computer". W INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2016 (ICCMSE 2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4968636.
Pełny tekst źródłaUğur, Şule, i Ahmet İyigör. "Calculations of structural, elastic, electronic, magnetic and phonon properties of FeNiMnAl by the first principles". W INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4897712.
Pełny tekst źródłaTeramae, Hiroyuki, i Yuriko Aoki. "Ab initio electronic structure calculation of polymononucleotide, a model of B-type DNA". W INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2018 (ICCMSE 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5079055.
Pełny tekst źródłaTeramae, Hiroyuki, i Yuriko Aoki. "An attempt at ab initio crystal orbital calculation of electronic structure of B-type model-DNA". W PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2017 (ICCMSE-2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5012302.
Pełny tekst źródłaNascimento, Letícia A., Érica C. M. Nascimento i João B. L. Martins. "Análise da estrutura eletrônica da tacrina e do neurotransmissor acetilcolina." W VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol2020150.
Pełny tekst źródłaGutman, Ivan. "TOPOLOGICAL INDICES – WHY AND HOW". W 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac,, 2021. http://dx.doi.org/10.46793/iccbi21.039g.
Pełny tekst źródłaTsuchida, E. "Practical Boundary Conditions for Electronic Structure Calculations". W 15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII). CIMNE, 2022. http://dx.doi.org/10.23967/wccm-apcom.2022.092.
Pełny tekst źródłaRaporty organizacyjne na temat "Electronic Structure Calculations - Computational Methods"
Langhoff, P. W., J. A. Boatz, R. J. Hinde i J. A. Sheehy. Atomic Spectral Methods for Molecular Electronic Structure Calculations. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2004. http://dx.doi.org/10.21236/ada429238.
Pełny tekst źródłaEMBODIED CARBON CALCULATION AND ASSESSMENT FOR STEEL STRUCTURE PROJECT. The Hong Kong Institute of Steel Construction, sierpień 2022. http://dx.doi.org/10.18057/icass2020.p.299.
Pełny tekst źródła