Gotowa bibliografia na temat „Electronic Spin - Semiconductor Structures”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Electronic Spin - Semiconductor Structures”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Electronic Spin - Semiconductor Structures"
Koc, Husnu, Amirullah M. Mamedov i Ekmel Ozbay. "Electronic Structure of Conventional Slater Type Antiferromagnetic Insulators: AIrO3 (A=Sr, Ba) Perovskites". Journal of Physics: Conference Series 2315, nr 1 (1.07.2022): 012033. http://dx.doi.org/10.1088/1742-6596/2315/1/012033.
Pełny tekst źródłaButler, W. H., X. G. Zhang, Xindong Wang, Jan van Ek i J. M. MacLaren. "Electronic structure of FM|semiconductor|FM spin tunneling structures". Journal of Applied Physics 81, nr 8 (15.04.1997): 5518–20. http://dx.doi.org/10.1063/1.364587.
Pełny tekst źródłaKacman, P. "Spin interactions in diluted magnetic semiconductors and magnetic semiconductor structures". Semiconductor Science and Technology 16, nr 4 (2.03.2001): R25—R39. http://dx.doi.org/10.1088/0268-1242/16/4/201.
Pełny tekst źródłaPOTEMSKI, MAREK. "SPECTROSCOPIC STUDIES OF SEMICONDUCTOR STRUCTURES IN MAGNETIC FIELDS". International Journal of Modern Physics B 21, nr 08n09 (10.04.2007): 1358–61. http://dx.doi.org/10.1142/s0217979207042835.
Pełny tekst źródłaAwschalom, D. D., J. F. Smyth, N. Samarth, H. Luo i J. K. Furdyna. "Magnetic and electronic spin dynamics in magnetic semiconductor quantum structures". Journal of Luminescence 52, nr 1-4 (czerwiec 1992): 165–74. http://dx.doi.org/10.1016/0022-2313(92)90241-z.
Pełny tekst źródłaTarucha, S., D. G. Austing, S. Sasaki, Y. Tokura, J. M. Elzerman, W. van der Wiel, S. de Franseschi i L. P. Kouwenhoven. "Spin effects in semiconductor quantum dot structures". Physica E: Low-dimensional Systems and Nanostructures 10, nr 1-3 (maj 2001): 45–51. http://dx.doi.org/10.1016/s1386-9477(01)00051-0.
Pełny tekst źródłaYu, Leo, H. C. Huang i O. Voskoboynikov. "Electron spin filtering in all-semiconductor tunneling structures". Superlattices and Microstructures 34, nr 3-6 (wrzesień 2003): 547–52. http://dx.doi.org/10.1016/j.spmi.2004.03.056.
Pełny tekst źródłaTakeyama, S., H. Mino, S. Adachi, T. Stirner, W. E. Hagston, H. Yokoi, Yu G. Semenov i in. "Photoexcited spin states in diluted magnetic semiconductor quantum structures". Physica B: Condensed Matter 294-295 (styczeń 2001): 453–58. http://dx.doi.org/10.1016/s0921-4526(00)00698-0.
Pełny tekst źródłaLi, Biao, Dahai Xu, Jun Zhao i Hui Zeng. "First Principles Study of Electronic and Magnetic Properties of Co-Doped Armchair Graphene Nanoribbons". Journal of Nanomaterials 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/538180.
Pełny tekst źródłaGorbatyi, I. N. "Spin hall effect in semiconductor structures with spatially inhomogeneous spin relaxation". Semiconductors 43, nr 8 (sierpień 2009): 1002–7. http://dx.doi.org/10.1134/s1063782609080089.
Pełny tekst źródłaRozprawy doktorskie na temat "Electronic Spin - Semiconductor Structures"
Liu, William K. "Electron spin dynamics in quantum dots, and the roles of charge transfer excited states in diluted magnetic semiconductors /". Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/8588.
Pełny tekst źródłaSegarra, Ortí Carlos. "Electronic structure of quantum dots: response to the environment and externally applied fields". Doctoral thesis, Universitat Jaume I, 2016. http://hdl.handle.net/10803/396165.
Pełny tekst źródłaIn this PhD Thesis we theoretically investigate the optical and electronic properties of semiconductor nanostructures by using the k·p method within the effective mass and the envelope function approximations. To this end, computational models are built to properly describe the conduction and valence bands of nanoscopic systems subject to various relevant phenomena. Particularly, we focus on quantum dots of different shape, dimensions, and composition to explore their behavior under external magnetic fields and interactions with the environment such as strain and piezoelectricity. In addition, the spin-orbit-induced relaxation of the spin degree of freedom confined in quantum dots is also studied taking into account all relevant sources of spin mixing in fully three-dimensional models. Finally, we also study the emergence of edge states in nanoribbons and quantum dots of monolayer MoS2, which is a novel two-dimensional material. The obtained results reveal several interesting features which may be useful for future applications.
Liu, Guoduan. "Fabrication and Characterization of Planar-Structure Perovskite Solar Cells". UKnowledge, 2019. https://uknowledge.uky.edu/ece_etds/137.
Pełny tekst źródłaOliveira, Miguel Afonso Magano Hipolito De Jesus. "Electronic properties of layered semiconductor structures". Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406392.
Pełny tekst źródłaMoehlmann, Benjamin James. "Spin transport in strained non-magnetic zinc blende semiconductors". Diss., University of Iowa, 2012. https://ir.uiowa.edu/etd/3353.
Pełny tekst źródłaNguyen, Cong Tu. "Spin dynamics in GaN- and InGaAs-based semiconductor structures". Thesis, Toulouse, INSA, 2014. http://www.theses.fr/2014ISAT0006/document.
Pełny tekst źródłaThis thesis work is a contribution to the investigation by photoluminescence spectroscopy of the spin properties of III-V semiconductors with possible applications to the emerging semiconductor spintronics field. Two approaches have been explored in this work to achieve a long and robust spin polarization: i) Spatial confinement of the carriers in 0D nanostructured systems (quantum dots). ii) Defect engineering of paramagnetic centres in a bulk systems. Concerning the first approach, we have investigated the polarization properties of excitons in nanowire-embedded GaN/AlN quantum dots. We first evidence a low temperature sizeable linear polarization degree of the photoluminescence (~15 %) under quasi-resonant excitation with no temporal decay during the exciton lifetime. Moreover, we demonstrate that this stable exciton spin polarization is unaffected by the temperature up to 300 K. A detailed theoretical model based on the density matrix approach has also been developed to account for the observed polarization degree and its angular dependence.Regarding the second approach, we have demonstrated a proof-of-concept of conduction band spin-filtering device based on the implantation of paramagnetic centres in InGaAs epilayers. The principle relies on the creation of Ga interstitial defects as previously demonstrated in our group in dilute nitride GaAsN compounds. The driving force behind this work has been to overcome the limitations inherent to the introduction of N in the compounds: a) The dependence of the photoluminescence energy on the spin-filtering efficiency. b) The lack of spatial patterning of the active regions.In this work we show how the spin-filtering defects can be created by ion implantation creating a chosen density and spatial distribution of gallium paramagnetic centers in N-free epilayers. We demonstrate by photoluminescence spectroscopy that spin-dependent recombination (SDR) ratios as high as 240 % can be achieved in the implanted areas. The optimum implantation conditions for the most efficient SDR are also determined by the systematic analysis of different ion doses spanning four orders of magnitude. We finally show how the application of a weak external magnetic field leads to a sizable enhancement of the SDR ratio from the spin polarization of the implanted nuclei
O'Sullivan, Eoin. "Electronic states and dynamics in semiconductor structures". Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325987.
Pełny tekst źródłaDe, Amritanand Pryor Craig E. "Spin dynamics and opto-electronic properties of some novel semiconductor systems". [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/352.
Pełny tekst źródłaDe, Amritanand. "Spin dynamics and opto-electronic properties of some novel semiconductor systems". Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/352.
Pełny tekst źródłaBirkett, M. J. "Opto-electronic studies of semiconductor tunnelling structures and quantum wells". Thesis, University of Sheffield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267179.
Pełny tekst źródłaKsiążki na temat "Electronic Spin - Semiconductor Structures"
Ihn, Thomas. Electronic Quantum Transport in Mesoscopic Semiconductor Structures. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/b97630.
Pełny tekst źródłaElectron spin resonance and related phenomena in low-dimensional structures. Berlin: Springer, 2009.
Znajdź pełny tekst źródłaChamberlain, J. M. Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures. Boston, MA: Springer US, 1991.
Znajdź pełny tekst źródłaNATO, Advanced Study Institute on Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures (1989 Castéra-Verduzan France). Electronic properties of multilayers and low-dimensional semiconductor structures. New York: Plenum Press, 1990.
Znajdź pełny tekst źródłaChamberlain, J. M., Laurence Eaves i Jean-Claude Portal, red. Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-7412-1.
Pełny tekst źródłaBechstedt, Friedhelm. Semiconductor surfaces and interfaces: Their atomic and electronic structures. Berlin: Akademie-Verlag, 1988.
Znajdź pełny tekst źródłaWinkler, Roland. Spin-orbit coupling effects in two-dimensional electron and hole systems. Berlin: Springer, 2003.
Znajdź pełny tekst źródłaKanazawa, Naoya. Charge and Heat Transport Phenomena in Electronic and Spin Structures in B20-type Compounds. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55660-2.
Pełny tekst źródłaHemment, P. L. F., Denis Flandre i A. N. Nazarov. Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment: Proceedings of the NATO Advanced Research Workshop on Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment Kiev, Ukraine 2630 April 2004 00. Dordrecht: Kluwer Academic Publishers, 2005.
Znajdź pełny tekst źródłaThe globalisation of high technology production: Society, space, and semiconductors in the restructuring of the modern world. London: Routledge, 1989.
Znajdź pełny tekst źródłaCzęści książek na temat "Electronic Spin - Semiconductor Structures"
Berg, A., i K. Klitzing. "Electron Spin Resonance and Nuclear Spin Relaxation in GaAs/AlgaAs Heterostructures". W Optical Phenomena in Semiconductor Structures of Reduced Dimensions, 3–11. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1912-2_2.
Pełny tekst źródłaMeisels, R., I. Kulaç, G. Sundaram, F. Kuchar, B. D. Mccombe, G. Weimann i W. Schlapp. "Electron Spin Resonance in the Domain of the Fractional Quantum Hall Effect". W Quantum Transport in Semiconductor Submicron Structures, 375–81. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1760-6_20.
Pełny tekst źródłaSham, L. J. "Electronic Properties in Semiconductor Heterostructures". W Physics of Low-Dimensional Semiconductor Structures, 1–56. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-2415-5_1.
Pełny tekst źródłaPepper, M. "Ballistic Electronic Transport in Semiconductor Structures". W Recent Progress in Many-Body Theories, 251–59. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3798-4_21.
Pełny tekst źródłaReed, M. A. "Vertical Electronic Transport in Semiconductor Nanostructures". W Physics and Technology of Submicron Structures, 64–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83431-8_7.
Pełny tekst źródłaGrundler, Dirk, Toru Matsuyama i Claas Henrik Möller. "Spin Injection in Ferromagnet/ Semiconductor Hybrid Structures". W Advances in Solid State Physics, 443–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44838-9_31.
Pełny tekst źródłaHeedt, S., I. Wehrmann, K. Weis, R. Calarco, H. Hardtdegen, D. Grützmacher, Th Schäpers, C. Morgan i D. E. Bürgler. "Toward Spin Electronic Devices Based on Semiconductor Nanowires". W Future Trends in Microelectronics, 328–39. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118678107.ch25.
Pełny tekst źródłaOhnishi, S., S. Saito, C. Satoko i S. Sugano. "Atomic and Electronic Structures of Semiconductor Clusters". W Physics and Chemistry of Small Clusters, 235–47. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-0357-3_34.
Pełny tekst źródłaNakayama, T., i M. Murayama. "Electronic Structures of Hetero-Crystalline Semiconductor Superlattices". W Springer Proceedings in Physics, 29–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84821-6_6.
Pełny tekst źródłaBeltram, F., i F. Capasso. "Artificial Semiconductor Structures: Electronic Properties and Device Applications". W Physics of Low-Dimensional Semiconductor Structures, 539–75. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-2415-5_15.
Pełny tekst źródłaStreszczenia konferencji na temat "Electronic Spin - Semiconductor Structures"
Tackeuchi, Atsushi. "Electron spin flip in III-V semiconductor quantum confined structures". W Integrated Optoelectronics Devices, redaktorzy Kong-Thon F. Tsen, Jin-Joo Song i Hongxing Jiang. SPIE, 2003. http://dx.doi.org/10.1117/12.475702.
Pełny tekst źródłaChernyshov, N. N., A. V. Belousov i A. G. Grebenik. "Spin-Dependent Tunneling in Semiconductor Structures Without an Inversion Center". W 2019 International Seminar on Electron Devices Design and Production (SED). IEEE, 2019. http://dx.doi.org/10.1109/sed.2019.8798431.
Pełny tekst źródłaLevy, J., V. Nikitin, J. M. Kikkawa, D. D. Awschalom, R. Garcia i N. Samarath. "Femtosecond Near-field Spin Spectroscopy in Digital Magnetic Heterostructures". W Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/qo.1995.qwa1.
Pełny tekst źródłaYablonovitch, E. "Photonic band structure: observation of an energy gap for light in 3-D periodic dielectric structures". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.fw6.
Pełny tekst źródłaRiblet, P., AR Cameron i A. Miller. "Spin-Gratings and In-Well Carrier Transport Measurements in GaAs/AlGaAs Multiple Quantum Wells". W Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/qo.1997.qthe.3.
Pełny tekst źródłaAkimoto, R., K. Ando, F. Sasaki, S. Kobayashi i T. Tani. "Femtosecond Carrier Spin Dynamics in CdTe/Cd0.6Mn0.4Te Quantum Wells". W International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.tue.38.
Pełny tekst źródłaOestreich, M., S. Hallstein, R. Nötzel, K. Ploog, E. Bauser, W. W. Rühle i K. Köhler. "Spin quantum beats in bulk and low dimensional semiconductors". W International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.wc.5.
Pełny tekst źródłaNestoklon, M. O., S. A. Tarasenko, J. M. Jancu i P. Voisin. "Spin structure of electron subbands in (110)-grown quantum wells". W THE PHYSICS OF SEMICONDUCTORS: Proceedings of the 31st International Conference on the Physics of Semiconductors (ICPS) 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4848439.
Pełny tekst źródłaLi, T., X. H. Zhang, X. Huang, Y. G. Zhu, L. F. Han, X. J. Shang, Z. C. Niu, Jisoon Ihm i Hyeonsik Cheong. "Electron and Hole Spin Relaxation in InAs Quantum Dots and Quasi-2D Structure". W PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666577.
Pełny tekst źródłaChernyshov, N. N., A. V. Belousov, I. N. Gvozdevskiy, N. I. Slipchenko, Khansaa A. Ghazi i M. A. F. Alkhawaldeh. "Spin Resonance in a Semiconductor Structure in Quantizing Magnetic Field". W 2019 International Seminar on Electron Devices Design and Production (SED). IEEE, 2019. http://dx.doi.org/10.1109/sed.2019.8798465.
Pełny tekst źródłaRaporty organizacyjne na temat "Electronic Spin - Semiconductor Structures"
Hadjipanayis, George, i Alexander Gabay. Electronic Structure and Spin Correlations in Novel Magnetic Structures. Office of Scientific and Technical Information (OSTI), czerwiec 2021. http://dx.doi.org/10.2172/1797990.
Pełny tekst źródłaRudin, Sergey, Gregory Garrett i Vladimir Malinovsky. Coherent Optical Control of Electronic Excitations in Wide-Band-Gap Semiconductor Structures. Fort Belvoir, VA: Defense Technical Information Center, maj 2015. http://dx.doi.org/10.21236/ada620146.
Pełny tekst źródłaBandyopadhyay, Supriyo, Hadis Morkoc, Alison Baski i Shiv Khanna. Self Assembled Semiconductor Quantum Dots for Spin Based All Optical and Electronic Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2008. http://dx.doi.org/10.21236/ada483818.
Pełny tekst źródła