Artykuły w czasopismach na temat „Electronic spectroscopy”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Electronic spectroscopy.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Electronic spectroscopy”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Seddon, Kenneth R. "Inorganic Electronic Spectroscopy". Journal of Organometallic Chemistry 290, nr 1 (lipiec 1985): c11—c12. http://dx.doi.org/10.1016/0022-328x(85)80158-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

R, G. "Inorganic electronic spectroscopy". Journal of Molecular Structure 129, nr 1-2 (czerwiec 1985): 180–81. http://dx.doi.org/10.1016/0022-2860(85)80208-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hybl, John D., Allison W. Albrecht, Sarah M. Gallagher Faeder i David M. Jonas. "Two-dimensional electronic spectroscopy". Chemical Physics Letters 297, nr 3-4 (listopad 1998): 307–13. http://dx.doi.org/10.1016/s0009-2614(98)01140-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ramasesha, Sheela K., i Stephen A. Payne. "Electronic spectroscopy of KF:Cu+". Physica B: Condensed Matter 167, nr 1 (październik 1990): 56–60. http://dx.doi.org/10.1016/0921-4526(90)90104-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Pino, T., Y. Carpentier, G. Féraud, H. Friha, D. L. Kokkin, T. P. Troy, N. Chalyavi, Ph Bréchignac i T. W. Schmidt. "Electronic Spectroscopy of PAHs". EAS Publications Series 46 (2011): 355–71. http://dx.doi.org/10.1051/eas/1146037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kaledin, Leonid A., i Michael C. Heaven. "Electronic Spectroscopy of UO". Journal of Molecular Spectroscopy 185, nr 1 (wrzesień 1997): 1–7. http://dx.doi.org/10.1006/jmsp.1997.7383.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kharlamova, Marianna V., i Christian Kramberger. "Spectroscopy of Filled Single-Walled Carbon Nanotubes". Nanomaterials 12, nr 1 (23.12.2021): 42. http://dx.doi.org/10.3390/nano12010042.

Pełny tekst źródła
Streszczenie:
Many envisaged applications, such as nanoelectronics, photovoltaics, thermoelectric power generation, light-emission devices, energy storage and biomedicine, necessitate single-walled carbon nanotube (SWCNT) samples with specific uniform electronic properties. The precise investigation of the electronic properties of filled SWCNTs on a qualitative and quantitative level is conducted by optical absorption spectroscopy, Raman spectroscopy, photoemission spectroscopy and X-ray absorption spectroscopy. This review is dedicated to the description of the spectroscopic methods for the analysis of the electronic properties of filled SWCNTs. The basic principle and main features of SWCNTs as well as signatures of doping-induced modifications of the spectra of filled SWCNTs are discussed.
Style APA, Harvard, Vancouver, ISO itp.
8

Nedilko, S. "Luminescence spectroscopy and electronic structure of Eu3+-doped Bi-containing oxide compoundsLuminescence spectroscopy and electronic structure of Eu3+-doped Bi-containing oxide compounds". Functional Materials 20, nr 1 (25.03.2013): 29–36. http://dx.doi.org/10.15407/fm20.01.029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Joung, Joonyoung F., Junwoo Baek, Youngseo Kim, Songyi Lee, Myung Hwa Kim, Juyoung Yoon i Sungnam Park. "Electronic relaxation dynamics of PCDA-PDA studied by transient absorption spectroscopy". Physical Chemistry Chemical Physics 18, nr 33 (2016): 23096–104. http://dx.doi.org/10.1039/c6cp03858a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Krechkivska, Olha, Michael D. Morse, Apostolos Kalemos i Aristides Mavridis. "Electronic spectroscopy and electronic structure of diatomic TiFe". Journal of Chemical Physics 137, nr 5 (7.08.2012): 054302. http://dx.doi.org/10.1063/1.4738958.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Garcia, Maria A., Carolin Vietz, Fernando Ruipérez, Michael D. Morse i Ivan Infante. "Electronic spectroscopy and electronic structure of diatomic IrSi". Journal of Chemical Physics 138, nr 15 (21.04.2013): 154306. http://dx.doi.org/10.1063/1.4801328.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Brugh, Dale J., Michael D. Morse, Apostolos Kalemos i Aristides Mavridis. "Electronic spectroscopy and electronic structure of diatomic CrC". Journal of Chemical Physics 133, nr 3 (21.07.2010): 034303. http://dx.doi.org/10.1063/1.3456178.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Kharlamova, Marianna V. "Kinetics, Electronic Properties of Filled Carbon Nanotubes Investigated with Spectroscopy for Applications". Nanomaterials 13, nr 1 (30.12.2022): 176. http://dx.doi.org/10.3390/nano13010176.

Pełny tekst źródła
Streszczenie:
The paper is dedicated to the discussion of kinetics of growth, and electronic properties of filled carbon nanotubes investigated by spectroscopy for applications. The paper starts with discussion of growth of carbon nanotubes inside metallocene-filled carbon nanotubes. Nickelocene, cobaltocene are considered for growth of carbon nanotubes. Then, the investigations of filled carbon nanotubes by four spectroscopic techniques are discussed. Among them are Raman spectroscopy, near edge X-ray absorption fine-structure spectroscopy, photoemission spectroscopy, optical absorption spectroscopy. It is discussed that metal halogenides, metal chalcogenides, metals lead to changes in electronic structure of nanotubes with n- or p-doping. The filling of carbon nanotubes with different organic and inorganic substances results in many promising applications. This review adds significant contribution to understanding of the kinetics and electronic properties of filled SWCNTs with considering new results of recent investigations. Challenges in various fields are analyzed and summarized, which shows the author’s viewpoint of progress in the spectroscopy of filled SWCNTs. This is a valuable step toward applications of filled SWCNTs and transfer of existing ideas from lab to industrial scale.
Style APA, Harvard, Vancouver, ISO itp.
14

Фейер, В. М. "Electronic spectroscopy of Mg films". Scientific Herald of Uzhhorod University.Series Physics 10 (31.12.2001): 26–30. http://dx.doi.org/10.24144/2415-8038.2001.10.26-30.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Thakur, Pramod Kumar. "Electronic Spectroscopy And Its Interpretation". Himalayan Physics 5 (5.07.2015): 112–15. http://dx.doi.org/10.3126/hj.v5i0.12888.

Pełny tekst źródła
Streszczenie:
Electronic Spectroscopy relies on the quantized nature of energy states. At given enough energy, an electron can be excited from its initial ground state or initial excited state (hot band) and briefly exist in a higher energy excited state. Electronic transitions involve exciting an electron from one principle quantum state to another. Without incentive, an electron will not transition to a higher level.. The Himalayan Physics Vol. 5, No. 5, Nov. 2014 Page: 112-115
Style APA, Harvard, Vancouver, ISO itp.
16

Zhang, Zhengyang, Adriana Huerta-Viga i Howe-Siang Tan. "Two-dimensional electronic-Raman spectroscopy". Optics Letters 43, nr 4 (15.02.2018): 939. http://dx.doi.org/10.1364/ol.43.000939.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Jochnowitz, E. B., i J. P. Maier. "Electronic spectroscopy of carbon chains". Molecular Physics 106, nr 16-18 (20.08.2008): 2093–106. http://dx.doi.org/10.1080/00268970802208588.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Courtney, Trevor L., Zachary W. Fox, Karla M. Slenkamp i Munira Khalil. "Two-dimensional vibrational-electronic spectroscopy". Journal of Chemical Physics 143, nr 15 (21.10.2015): 154201. http://dx.doi.org/10.1063/1.4932983.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Stienkemeier, Frank, i Andrey F. Vilesov. "Electronic spectroscopy in He droplets". Journal of Chemical Physics 115, nr 22 (2001): 10119. http://dx.doi.org/10.1063/1.1415433.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Bacis, R., A. J. Bouvier i J. M. Flaud. "The ozone molecule: electronic spectroscopy". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 54, nr 1 (styczeń 1998): 17–34. http://dx.doi.org/10.1016/s1386-1425(97)00259-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Loukianov, Anton, Andrew Niedringhaus, Brandon Berg, Jie Pan, S. Seckin Senlik i Jennifer P. Ogilvie. "Two-Dimensional Electronic Stark Spectroscopy". Journal of Physical Chemistry Letters 8, nr 3 (24.01.2017): 679–83. http://dx.doi.org/10.1021/acs.jpclett.6b02695.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Dorohoi, Dana. "Electronic spectroscopy of N-ylids". Journal of Molecular Structure 704, nr 1-3 (październik 2004): 31–43. http://dx.doi.org/10.1016/j.molstruc.2004.01.047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Brümmer, O., i W. Heichler. "Auger Spectroscopy and Electronic Structure". Zeitschrift für Kristallographie 195, nr 1-2 (styczeń 1991): 156. http://dx.doi.org/10.1524/zkri.1991.195.1-2.156.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Sherman, Bradford Charles, i William B. Euler. "Electronic spectroscopy of poly(propylmethylazine)". Chemistry of Materials 6, nr 7 (lipiec 1994): 899–906. http://dx.doi.org/10.1021/cm00043a007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Eden, S., B. Barc, N. J. Mason, S. V. Hoffmann, Y. Nunes i P. Limão-Vieira. "Electronic state spectroscopy of C2Cl4". Chemical Physics 365, nr 3 (listopad 2009): 150–57. http://dx.doi.org/10.1016/j.chemphys.2009.10.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Swanson, J. G., i V. Montgomery. "Opto-electronic modulation spectroscopy (OEMS)". Journal of Electronic Materials 19, nr 1 (styczeń 1990): 13–18. http://dx.doi.org/10.1007/bf02655546.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Yeh, C. S., D. L. Robbins, J. S. Pilgrim i M. A. Duncan. "Photoionizaton electronic spectroscopy of AgK". Chemical Physics Letters 206, nr 5-6 (maj 1993): 509–14. http://dx.doi.org/10.1016/0009-2614(93)80176-p.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Pilgrim, J. S., D. L. Robbins i M. A. Duncan. "Photoionization electronic spectroscopy of AlOH". Chemical Physics Letters 202, nr 3-4 (styczeń 1993): 203–8. http://dx.doi.org/10.1016/0009-2614(93)85266-q.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

López Arbeloa, F., T. López Arbeloa i I. López Arbeloa. "Electronic spectroscopy of pyrromethene 546". Journal of Photochemistry and Photobiology A: Chemistry 121, nr 3 (marzec 1999): 177–82. http://dx.doi.org/10.1016/s1010-6030(98)00453-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Maier, John P. "Electronic spectroscopy of carbon chains". Chemical Society Reviews 26, nr 1 (1997): 21. http://dx.doi.org/10.1039/cs9972600021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Maier, John P. "Electronic Spectroscopy of Carbon Chains". Journal of Physical Chemistry A 102, nr 20 (maj 1998): 3462–69. http://dx.doi.org/10.1021/jp9807219.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Jochnowitz, Evan B., i John P. Maier. "Electronic Spectroscopy of Carbon Chains". Annual Review of Physical Chemistry 59, nr 1 (maj 2008): 519–44. http://dx.doi.org/10.1146/annurev.physchem.59.032607.093558.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

MASON, S. F. "The Electronic Spectroscopy of Dyes". Journal of the Society of Dyers and Colourists 84, nr 12 (22.10.2008): 604–12. http://dx.doi.org/10.1111/j.1478-4408.1968.tb02796.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Krechkivska, Olha, i Michael D. Morse. "Electronic Spectroscopy of Diatomic VC". Journal of Physical Chemistry A 117, nr 50 (12.07.2013): 13284–91. http://dx.doi.org/10.1021/jp404710s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Robbins, D. L., C. S. Yeh, J. S. Pilgrim, G. L. Lang i M. A. Duncan. "Photoionization electronic spectroscopy of AlAg". Journal of Chemical Physics 100, nr 7 (kwiecień 1994): 4775–83. http://dx.doi.org/10.1063/1.466268.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Nakajima, Atsushi, Kuniyoshi Hoshino, Katsura Watanabe, Yuji Konishi, Tsuyoshi Kurikawa, Suehiro Iwata i Koji Kaya. "Photoionization electronic spectroscopy of AlNa". Chemical Physics Letters 222, nr 4 (maj 1994): 353–57. http://dx.doi.org/10.1016/0009-2614(94)87074-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Turowski, Michał, Urszula Szczepaniak, Thomas Custer, Marcin Gronowski i Robert Kołos. "Electronic Spectroscopy of Methylcyanodiacetylene (CH3C5N)". ChemPhysChem 17, nr 24 (5.12.2016): 4068–78. http://dx.doi.org/10.1002/cphc.201600949.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Fougère, Scott G., Walter J. Balfour, Jianying Cao i Charles X. W. Qian. "Electronic Spectroscopy of Rhodium Mononitride". Journal of Molecular Spectroscopy 199, nr 1 (styczeń 2000): 18–25. http://dx.doi.org/10.1006/jmsp.1999.7972.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Rohringer, Nina. "X-ray Raman scattering: a building block for nonlinear spectroscopy". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, nr 2145 (kwiecień 2019): 20170471. http://dx.doi.org/10.1098/rsta.2017.0471.

Pełny tekst źródła
Streszczenie:
Ultraintense X-ray free-electron laser pulses of attosecond duration can enable new nonlinear X-ray spectroscopic techniques to observe coherent electronic motion. The simplest nonlinear X-ray spectroscopic concept is based on stimulated electronic X-ray Raman scattering. We present a snapshot of recent experimental achievements, paving the way towards the goal of realizing nonlinear X-ray spectroscopy. In particular, we review the first proof-of-principle experiments, demonstrating stimulated X-ray emission and scattering in atomic gases in the soft X-ray regime and first results of stimulated hard X-ray emission spectroscopy on transition metal complexes. We critically asses the challenges that have to be overcome for future successful implementation of nonlinear coherent X-ray Raman spectroscopy. This article is part of the theme issue ‘Measurement of ultrafast electronic and structural dynamics with X-rays’.
Style APA, Harvard, Vancouver, ISO itp.
40

Xiao Changtao, 肖常涛, 宋寅 Song Yin i 赵维谦 Zhao Weiqian. "超快二维电子光谱(特邀)". Laser & Optoelectronics Progress 61, nr 1 (2024): 0130002. http://dx.doi.org/10.3788/lop232753.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Garcia, Maria A., i Michael D. Morse. "Electronic Spectroscopy and Electronic Structure of Copper Acetylide, CuCCH". Journal of Physical Chemistry A 117, nr 39 (12.03.2013): 9860–70. http://dx.doi.org/10.1021/jp312841q.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Solomon, Edward I., Lipika Basumallick, Peng Chen i Pierre Kennepohl. "Variable energy photoelectron spectroscopy: electronic structure and electronic relaxation". Coordination Chemistry Reviews 249, nr 1-2 (styczeń 2005): 229–53. http://dx.doi.org/10.1016/j.ccr.2004.02.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Dong, Chung-Li. "(Invited) Probing the Atomic and Electronic Structure of Working Energy Materials with x-Ray Spectroscopy". ECS Meeting Abstracts MA2022-01, nr 36 (7.07.2022): 1578. http://dx.doi.org/10.1149/ma2022-01361578mtgabs.

Pełny tekst źródła
Streszczenie:
Improving energy conversion/generation/storage efficiency of energy materials has always been a great challenge. Monitoring the atomic/electronic structures close to interface in many important energy materials, such as nanostructured catalysts, artificially photosynthesizing materials, smart materials, and energy storage devices, is of great importance. Designing such a material with improved performance without understanding its atomic/electronic structures, and their changes under operating conditions, is difficult. Understanding and controlling the interfacial electronic structures of energy materials require in-situ characterizations, of which synchrotron x-ray spectroscopy is the one with many unique features. The last decade has witnessed a golden age of in situ synchrotron x-ray spectroscopy for energy materials. X-ray absorption spectroscopy can be used to determine unoccupied electronic structures while X-ray emission spectroscopy can be utilized to examine occupied electronic structure. The additional use of resonant inelastic X-ray scattering further reveals inter-band d-d excitation or intra-band charge transfer excitation that can reflect the fundamental chemical and physical properties. An emerging technique, scanning transmission x-ray microscopy is a spectro-microscopic approach, providing regional x-ray absorption spectroscopy, is also gearing up for energy science. This presentation will report recent studies and perspectives of the application of in situ/operando synchrotron x-ray spectroscopy to energy materials. Tamkang University (TKU) end-stations constructed at the Taiwan Photon Source (TPS) 45A & 27A beamlines for the x-ray spectroscopic investigation of energy materials will also be introduced.
Style APA, Harvard, Vancouver, ISO itp.
44

Kim, Yujeong, Jin Kim, Linh K. Nguyen, Yong-Min Lee, Wonwoo Nam i Sun Hee Kim. "EPR spectroscopy elucidates the electronic structure of [FeV(O)(TAML)] complexes". Inorganic Chemistry Frontiers 8, nr 15 (2021): 3775–83. http://dx.doi.org/10.1039/d1qi00522g.

Pełny tekst źródła
Streszczenie:
The complete hyperfine tensor of 17O of the FeV-oxo moeity was probed by ENDOR spectroscopy. The EPR spectroscopic results reported here provide a conclusive experimental basis for elucidating the electronic structure of the FeV-oxo complex.
Style APA, Harvard, Vancouver, ISO itp.
45

Kositzki, Ramona, Stefan Mebs, Nils Schuth, Nils Leidel, Lennart Schwartz, Michael Karnahl, Florian Wittkamp i in. "Electronic and molecular structure relations in diiron compounds mimicking the [FeFe]-hydrogenase active site studied by X-ray spectroscopy and quantum chemistry". Dalton Transactions 46, nr 37 (2017): 12544–57. http://dx.doi.org/10.1039/c7dt02720f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Koleva, Bojidarka, Rositsa Nikolova, Atanas Tchapkanov, Tsonko Kolev, Heike Mayer-Figge, Michael Spiteller i William Sheldrick. "Crystal structure and spectroscopic properties of 4-acetaminopyridine and its protonated form". Polish Journal of Chemical Technology 11, nr 3 (1.01.2009): 35–40. http://dx.doi.org/10.2478/v10026-009-0033-y.

Pełny tekst źródła
Streszczenie:
Crystal structure and spectroscopic properties of 4-acetaminopyridine and its protonated form 4-Acetaminopyridine dihydrate and its protonated form, stabilized as the hydrochloride salt have been synthesized and spectroscopic elucidated in solution and in the solid-state by means of the inear-polarized solid state IR-spectroscopy (IR-LD), UV-spectroscopy, TGA, DSC, and the positive and negative ESI MS. Quantum chemical calculations were used to obtain the electronic structure, vibrational data and the electronic spectra. The spectroscopic and theoretical data are compared with the structure of the first compound obtained by single crystal X-ray diffraction. The effect of Npy protonation on the optical and magnetic properties of a 4-acetaminopyridine is discussed.
Style APA, Harvard, Vancouver, ISO itp.
47

Kim, Youngsang, i Hyunwook Song. "Noise spectroscopy of molecular electronic junctions". Applied Physics Reviews 8, nr 1 (marzec 2021): 011303. http://dx.doi.org/10.1063/5.0027602.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Persinger, Thomas D., Jiande Han i Michael C. Heaven. "Electronic Spectroscopy and Photoionization of LiMg". Journal of Physical Chemistry A 125, nr 17 (21.04.2021): 3653–63. http://dx.doi.org/10.1021/acs.jpca.1c01656.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

SHABLAEV, S. I., i R. V. PISAREV. "TWO-PHOTON ABSORPTION SPECTROSCOPY OF ELECTRONIC". Journal of the Magnetics Society of Japan 11, S_1_ISMO (1987): S1_19–22. http://dx.doi.org/10.3379/jmsjmag.11.s1_19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Zalecki, R., A. Kołodziejczyk, N. T. H. Kim-Ngan, A. Adamska, A. Kowalczyk, T. Toliński i M. Mihalik. "Electronic States of UNi2from Photoemission Spectroscopy". Acta Physica Polonica A 113, nr 1 (styczeń 2008): 407–12. http://dx.doi.org/10.12693/aphyspola.113.407.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii