Gotowa bibliografia na temat „Electronic Properties - Semiconductor Nanocrystals (NCs)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Electronic Properties - Semiconductor Nanocrystals (NCs)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Electronic Properties - Semiconductor Nanocrystals (NCs)"
Qiao, Fen. "Semiconductor Nanocrystals for Photovoltaic Devices". Materials Science Forum 852 (kwiecień 2016): 935–38. http://dx.doi.org/10.4028/www.scientific.net/msf.852.935.
Pełny tekst źródłaKovalenko, Maksym V., Loredana Protesescu i Maryna I. Bodnarchuk. "Properties and potential optoelectronic applications of lead halide perovskite nanocrystals". Science 358, nr 6364 (9.11.2017): 745–50. http://dx.doi.org/10.1126/science.aam7093.
Pełny tekst źródłaHarfenist, S. A., Z. L. Wang, T. G. Schaaff i R. L. Whettent. "A BCC Superlattice of Passivated Gold Nanocrystals". Microscopy and Microanalysis 4, S2 (lipiec 1998): 716–17. http://dx.doi.org/10.1017/s1431927600023709.
Pełny tekst źródłaSayevich, Vladimir, Chris Guhrenz i Nikolai Gaponik. "All-Inorganic and Hybrid Capping of Nanocrystals as Key to Their Application-Relevant Processing". MRS Advances 3, nr 47-48 (2018): 2923–30. http://dx.doi.org/10.1557/adv.2018.445.
Pełny tekst źródłaCasanova-Cháfer, Juan, Rocío García-Aboal, Pedro Atienzar i Eduard Llobet. "Gas Sensing Properties of Perovskite Decorated Graphene at Room Temperature". Sensors 19, nr 20 (20.10.2019): 4563. http://dx.doi.org/10.3390/s19204563.
Pełny tekst źródłaQiao, Fen, Qian Wang, Zixia He, Qing Liu i Aimin Liu. "Self-Assembly of Colloidal Nanorods Arrays". International Journal of Nanoscience 14, nr 01n02 (luty 2015): 1460029. http://dx.doi.org/10.1142/s0219581x14600291.
Pełny tekst źródłaDzhagan, Volodymyr, Olga Kapush, Nazar Mazur, Yevhenii Havryliuk, Mykola I. Danylenko, Serhiy Budzulyak, Volodymyr Yukhymchuk, Mykhailo Valakh, Alexander P. Litvinchuk i Dietrich R. T. Zahn. "Colloidal Cu-Zn-Sn-Te Nanocrystals: Aqueous Synthesis and Raman Spectroscopy Study". Nanomaterials 11, nr 11 (31.10.2021): 2923. http://dx.doi.org/10.3390/nano11112923.
Pełny tekst źródłaAnni, Marco. "Polymer-II-VI Nanocrystals Blends: Basic Physics and Device Applications to Lasers and LEDs". Nanomaterials 9, nr 7 (19.07.2019): 1036. http://dx.doi.org/10.3390/nano9071036.
Pełny tekst źródłaCamellini, Andrea, Haiguang Zhao, Sergio Brovelli, Ranjani Viswanatha, Alberto Vomiero i Margherita Zavelani-Rossi. "(Invited) Ultrafast Spectroscopy in Semiconductor Nanocrystals: Revealing the Origin of Single Vs Double Emission, of Optical Gain and the Role of Dopants". ECS Meeting Abstracts MA2022-01, nr 20 (7.07.2022): 1104. http://dx.doi.org/10.1149/ma2022-01201104mtgabs.
Pełny tekst źródłaDeng, Yuan, Yicheng Zeng, Wanying Gu, Pan Huang, Geyu Jin, Fangze Liu, Jing Wei i Hongbo Li. "Colloidal Synthesis and Ultraviolet Luminescence of Rb2AgI3 Nanocrystals". Crystals 13, nr 7 (16.07.2023): 1110. http://dx.doi.org/10.3390/cryst13071110.
Pełny tekst źródłaRozprawy doktorskie na temat "Electronic Properties - Semiconductor Nanocrystals (NCs)"
Zbydniewska, Ewa. "Electronic properties of coupled semiconductor nanocrystals and carbon nanotubes". Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10010/document.
Pełny tekst źródłaWe study the electronic properties of coupled semiconductor nanocrystals and carbon nanotubes. We report measurements of single electron transfers between single CdSe colloidal nanocrystal coupled to a carbon nanotube field effect transistor at room temperature in ambient conditions. The measurements consist of nanotube current level monitoring as a function of time for fixed gate voltage. We observe a sequence of high - low currents (random telegraph signal) on time scales up to several seconds with ms sampling time. We attribute the two level current fluctuations to the transfer of single electron onto the nanocrystal. The probability of the occupation time τ at the high or low current state follows a power law of the form P(τ)~τ-α where exponent α lies between 1.5 and 4 (typically close to 2.8). The observation suggests that the two-level current switching is similar to the fluorescence intermittency (optical blinking) observed in individual quantum dots. The spectroscopic analysis of the devices based on coupled semiconductor nanocrystals and carbon nanotubes is consistent with the charging of nanocrystal defect states with a charging energy of Ec ~ 200 meV. The approach developed here enables to probe the trap state dynamics in quantum dots in ambient air and room temperature from a purely electrical approach, and therefore to better understand the physics at hand in (opto)electronic devices based on quantum dots
Shcheglov, Kirill V. Atwater Harry Albert. "Synthesis, optical and electronic properties of group IV semiconductor nanocrystals /". Diss., Pasadena, Calif. : California Institute of Technology, 1997. http://resolver.caltech.edu/CaltechETD:etd-01172008-081522.
Pełny tekst źródłaSchill, Alexander Wilhem. "Interesting Electronic and Dynamic Properties of Quantum Dot Quantum Wells and other Semiconductor Nanocrystal Heterostructures". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11514.
Pełny tekst źródłaShcheglov, Kirill Vadim. "Synthesis, optical and electronic properties of group IV semiconductor nanocrystals". Thesis, 1997. https://thesis.library.caltech.edu/211/1/Shcheglov_kv_1997.pdf.
Pełny tekst źródłaArora, Vikas. "Design and synthesis of semiconductor nanocrystals to modify their optical and electronic properties". Thesis, 2018. http://localhost:8080/iit/handle/2074/7563.
Pełny tekst źródłaViswanatha, Ranjani. "Growth Kinetics And Electronic Properties Of Semiconducting Nanocrystals In The Quantum Confined Regime". Thesis, 2006. https://etd.iisc.ac.in/handle/2005/403.
Pełny tekst źródłaViswanatha, Ranjani. "Growth Kinetics And Electronic Properties Of Semiconducting Nanocrystals In The Quantum Confined Regime". Thesis, 2006. http://hdl.handle.net/2005/403.
Pełny tekst źródłaSanders, Kirsty Gail. "Electronic properties of low dimensional carbon materials". Thesis, 2016. http://hdl.handle.net/10539/21681.
Pełny tekst źródłaLow dimensional carbon systems are of immense interest in condensed matter physics due to their exceptional and often startling electric and magnetic properties. In this dissertation we consider two of these materials - graphene and nanocrystalline diamond. The effect of synthesis parameters on the quality of graphene is examined and it is found that controlling the partial pressure of the synthesis gases plays a critical role in determining the quality of the sample. Superconductivity in Boron doped nanocrystalline diamond (B-NCD) is considered and weak localisation along with a Berezinsky-Kosterlitz-Thouless (BKT) transition is identified in the samples. Furthermore we explore theoretically the problem of electric transport through a double quantum dot system coupled to a nanomechanical resonator. We find resonant tunnelling when the difference between the energy levels of the dots equals an integer multiple of the resonator frequency, and that while initially increasing the electron phonon coupling (g) increases the current through the sample further increase in g inhibits electric transport through the quantum dots.
LG2017
Książki na temat "Electronic Properties - Semiconductor Nanocrystals (NCs)"
I, Klimov Victor, red. Semiconductor and metal nanocrystals: Synthesis and electronic and optical properties. New York: Marcel Dekker, Inc., 2004.
Znajdź pełny tekst źródłaInelastic light scattering of semiconductor nanostructures: Fundamentals and recent advances. Berlin: Springer, 2006.
Znajdź pełny tekst źródłaKlimov, Victor I. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties. Taylor & Francis Group, 2003.
Znajdź pełny tekst źródłaKlimov, Victor I. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties. Taylor & Francis Group, 2003.
Znajdź pełny tekst źródłaVictor, I. Klimov. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties. Taylor & Francis Group, 2003.
Znajdź pełny tekst źródłaKlimov, Victor I. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties. Taylor & Francis Group, 2003.
Znajdź pełny tekst źródłaKlimov, Victor I. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties. Taylor & Francis Group, 2003.
Znajdź pełny tekst źródłaKlimov, Victor I. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties. Taylor & Francis Group, 2003.
Znajdź pełny tekst źródłaKlimov, Victor I. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties (Optical Engineering). CRC, 2003.
Znajdź pełny tekst źródłaCzęści książek na temat "Electronic Properties - Semiconductor Nanocrystals (NCs)"
Chen, Tupei. "Electronic and Optical Properties of Si and Ge Nanocrystals". W Semiconductor Nanocrystals and Metal Nanoparticles, 215–54. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315374628-7.
Pełny tekst źródłaBrus, Louis E. "Electronic and Optical Properties of Semiconductor Nanocrystals: From Molecules to Bulk Crystals". W Nanophase Materials, 433–48. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1076-1_48.
Pełny tekst źródłaC.A. Silva, Anielle, Amanda I.S. Barbosa, Alessandra S. Silva, Elisson A. Batista, Thaís K. de Lima Rezende, Éder V. Guimarães, Ricardo S. Silva i Noelio O. Dantas. "Diluted Magnetic Semiconductors Nanocrystals: Saturation and Modulation". W Nanocrystals [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96679.
Pełny tekst źródłaC.A. Silva, Anielle, Eliete A. Alvin, Francisco R.A. dos Santos, Samanta L.M. de Matos, Jerusa M. de Oliveira, Alessandra S. Silva, Éder V. Guimarães i in. "Doped Semiconductor Nanocrystals: Development and Applications". W Nanocrystals [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96753.
Pełny tekst źródłaChelikowsky, James R. "Algorithms for Predicting the Physical Properties of Nanocrystals and Large Clusters". W Computational Nanoscience, 1–25. The Royal Society of Chemistry, 2011. http://dx.doi.org/10.1039/bk9781849731331-00001.
Pełny tekst źródłaShimoi, Norihiro. "Nonthermal Crystalline Forming of Ceramic Nanoparticles by Non-Equilibrium Excitation Reaction Field of Electron". W Nanocrystals [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97037.
Pełny tekst źródłaStreszczenia konferencji na temat "Electronic Properties - Semiconductor Nanocrystals (NCs)"
Goncharova, Olga V., i Sergey A. Tikhomirov. "Nonlinear Optical Properties of Thin-Film Quasi-Zero-Dimensional Media Depending on the Matrix Materials". W The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/cleo_europe.1996.cfg6.
Pełny tekst źródłaKlimov, Victor I., i Vladimir A. Karavanskii. "Ultrafast Optical Nonlinearities in CuxS Nanocrystals". W Nonlinear Optics: Materials, Fundamentals and Applications. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/nlo.1996.nthe.17.
Pełny tekst źródłaKlimov, Victor I., i Duncan W. McBranch. "Ultrafast Optical Nonlinearities and Carrier Dynamics in Direct- and Indirect-Gap Semiconductor Nanocrystals". W Chemistry and Physics of Small-Scale Structures. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/cps.1997.ctua.3.
Pełny tekst źródłaLipovskii, A. A., E. V. Kolobkova i V. D. Petrikov. "Optical Properties of Novel Phosphate with Embedded Semiconductor Nanocrystals". W EQEC'96. 1996 European Quantum Electronic Conference. IEEE, 1996. http://dx.doi.org/10.1109/eqec.1996.561797.
Pełny tekst źródłaBanin, U., J. C. Lee, A. A. Guzelian i A. P. Alivisatos. "Size Dependent Electronic Level Structure of Colloidal InAs Nanocrystal Quantum Dots". W Chemistry and Physics of Small-Scale Structures. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/cps.1997.ctua.2.
Pełny tekst źródłaBawendi, Moungi G. "Semiconductor Nanocrystallites: Building Blocks for Quantum Dot Structures". W Chemistry and Physics of Small-Scale Structures. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/cps.1997.ctua.1.
Pełny tekst źródłaBawendi, Moungi G. "II-VI Semiconductor Nanocrystals as Isolated Quantum Dots and in Complex Structures". W Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/qo.1995.qfa1.
Pełny tekst źródłaKang, Ki Moon, Hyo-Won Kim, Il-Wun Shim i Ho-Young Kwak. "Syntheses of Specialty Nanomaterials at the Multibubble Sonoluminescence Condition". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68320.
Pełny tekst źródła