Artykuły w czasopismach na temat „Electronic Properties - Exotic Transition Metal Oxides”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Electronic Properties - Exotic Transition Metal Oxides”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Hattori, Azusa N., Ai I. Osaka, Ken Hattori, Yasuhisa Naitoh, Hisashi Shima, Hiroyuki Akinaga i Hidekazu Tanaka. "Investigation of Statistical Metal-Insulator Transition Properties of Electronic Domains in Spatially Confined VO2 Nanostructure". Crystals 10, nr 8 (22.07.2020): 631. http://dx.doi.org/10.3390/cryst10080631.
Pełny tekst źródłaALONSO, J. A., M. J. MARTÍNEZ-LOPE, C. DE LA CALLE, J. SÁNCHEZ-BENÍTEZ, M. RETUERTO, A. AGUADERO i M. T. FERNANDEZ-DÍAZ. "HIGH-PRESSURE SYNTHESIS AND CHARACTERIZATION OF NEW METASTABLE OXIDES". Functional Materials Letters 04, nr 04 (grudzień 2011): 333–36. http://dx.doi.org/10.1142/s1793604711002123.
Pełny tekst źródłaMerckling, Clement, Islam Ahmed, Tsang Hsuan Tsang, Moloud Kaviani, Jan Genoe i Stefan De Gendt. "(Invited) Integrated Perovskites Oxides on Silicon: From Optical to Quantum Applications". ECS Meeting Abstracts MA2022-01, nr 19 (7.07.2022): 1060. http://dx.doi.org/10.1149/ma2022-01191060mtgabs.
Pełny tekst źródłaRodenbücher, Christian, i Kristof Szot. "Electronic Phenomena of Transition Metal Oxides". Crystals 11, nr 3 (5.03.2021): 256. http://dx.doi.org/10.3390/cryst11030256.
Pełny tekst źródłaAnsari, Lida, Paul Hurley i Farzan Gity. "Two-Dimensional Gallium Selenide (GaSe) Material for Nanoelectronics Application". ECS Meeting Abstracts MA2022-01, nr 12 (7.07.2022): 868. http://dx.doi.org/10.1149/ma2022-0112868mtgabs.
Pełny tekst źródłaUlstrup, Søren, Jyoti Katoch, Roland J. Koch, Daniel Schwarz, Simranjeet Singh, Kathleen M. McCreary, Hyang Keun Yoo i in. "Spatially Resolved Electronic Properties of Single-Layer WS2 on Transition Metal Oxides". ACS Nano 10, nr 11 (26.10.2016): 10058–67. http://dx.doi.org/10.1021/acsnano.6b04914.
Pełny tekst źródłaDu, Yongping, i Xiangang Wan. "The novel electronic and magnetic properties in 5d transition metal oxides system". Computational Materials Science 112 (luty 2016): 416–27. http://dx.doi.org/10.1016/j.commatsci.2015.09.036.
Pełny tekst źródłaWang, Hongxia, Kelvin H. L. Zhang, Jan P. Hofmann, Victor A. de la Peña O'Shea i Freddy E. Oropeza. "The electronic structure of transition metal oxides for oxygen evolution reaction". Journal of Materials Chemistry A 9, nr 35 (2021): 19465–88. http://dx.doi.org/10.1039/d1ta03732c.
Pełny tekst źródłaChan, Henry, Kiran Sasikumar, Srilok Srinivasan, Mathew Cherukara, Badri Narayanan i Subramanian K. R. S. Sankaranarayanan. "Machine learning a bond order potential model to study thermal transport in WSe2 nanostructures". Nanoscale 11, nr 21 (2019): 10381–92. http://dx.doi.org/10.1039/c9nr02873k.
Pełny tekst źródłaEVARESTOV, R. A., A. KALINKO, A. KUZMIN, M. LOSEV i J. PURANS. "FIRST-PRINCIPLES LCAO CALCULATIONS ON 5D TRANSITION METAL OXIDES: ELECTRONIC AND PHONON PROPERTIES". Integrated Ferroelectrics 108, nr 1 (22.10.2009): 1–10. http://dx.doi.org/10.1080/10584580903323990.
Pełny tekst źródłaWakabayashi, Yusuke. "Near-surface structural study of transition metal oxides to understand their electronic properties". Journal of Physics: Condensed Matter 23, nr 48 (28.10.2011): 483001. http://dx.doi.org/10.1088/0953-8984/23/48/483001.
Pełny tekst źródłaMaignan, A., W. Kobayashi, S. Hébert, G. Martinet, D. Pelloquin, N. Bellido i Ch Simon. "Transition-Metal Oxides with Triangular Lattices: Generation of New Magnetic and Electronic Properties". Inorganic Chemistry 47, nr 19 (6.10.2008): 8553–61. http://dx.doi.org/10.1021/ic8006926.
Pełny tekst źródłaKhomskii, D. "Charge and orbital ordering in transition metal oxides". Journal de Physique IV 12, nr 9 (listopad 2002): 257. http://dx.doi.org/10.1051/jp4:20020408.
Pełny tekst źródłaKan, Er Jun. "Electronic Structures in LaTiO3/LaAlO3 Multilayers". Advanced Materials Research 771 (wrzesień 2013): 7–11. http://dx.doi.org/10.4028/www.scientific.net/amr.771.7.
Pełny tekst źródłaBergo, P., W. M. Pontuschka, J. M. Prison, C.C. Motta i J. R. Martinelli. "Dielectric properties of barium phosphate glasses doped with transition metal oxides". Journal of Non-Crystalline Solids 348 (listopad 2004): 84–89. http://dx.doi.org/10.1016/j.jnoncrysol.2004.08.130.
Pełny tekst źródłaNiu, Xu, Bin-Bin Chen, Ni Zhong, Ping-Hua Xiang i Chun-Gang Duan. "Topological Hall effect in SrRuO3 thin films and heterostructures". Journal of Physics: Condensed Matter 34, nr 24 (14.04.2022): 244001. http://dx.doi.org/10.1088/1361-648x/ac60d0.
Pełny tekst źródłaMerkle, Rotraut, Maximilian F. Hoedl, Giulia Raimondi, Reihaneh Zohourian i Joachim Maier. "Oxides with Mixed Protonic and Electronic Conductivity". Annual Review of Materials Research 51, nr 1 (26.07.2021): 461–93. http://dx.doi.org/10.1146/annurev-matsci-091819-010219.
Pełny tekst źródłaChudnovskii, F. A., A. L. Pergament, D. A. Schaefer i G. B. Stefanovich. "Effect of Laser Irradiation on the Properties of Transition Metal Oxides". Journal of Solid State Chemistry 118, nr 2 (wrzesień 1995): 417–18. http://dx.doi.org/10.1006/jssc.1995.1363.
Pełny tekst źródłaYin, Zongyou, Moshe Tordjman, Youngtack Lee, Alon Vardi, Rafi Kalish i Jesús A. del Alamo. "Enhanced transport in transistor by tuning transition-metal oxide electronic states interfaced with diamond". Science Advances 4, nr 9 (wrzesień 2018): eaau0480. http://dx.doi.org/10.1126/sciadv.aau0480.
Pełny tekst źródłaMitin, A. V. "Manifestations of quasi-one-dimensional correlations in the electronic properties of transition-metal oxides". Bulletin of the Russian Academy of Sciences: Physics 72, nr 10 (październik 2008): 1339–42. http://dx.doi.org/10.3103/s1062873808100092.
Pełny tekst źródłaKhan, M. N., M. A. Hassan i C. A. Hogarth. "The electronic and optical properties of germanium tellurite glasses containing various transition metal oxides". Physica Status Solidi (a) 106, nr 1 (16.03.1988): 191–200. http://dx.doi.org/10.1002/pssa.2211060123.
Pełny tekst źródłaOOMI, G., S. KAJI, Y. TOMIOKA i Y. TOKURA. "HIGH PRESSURE STUDY OF NOVEL ELECTRONIC PROPERTIES IN Sr2Fe(W1-xMox)O6 NEAR METAL-INSULATOR TRANSITION". International Journal of Modern Physics B 21, nr 18n19 (30.07.2007): 3279–84. http://dx.doi.org/10.1142/s0217979207044378.
Pełny tekst źródłaTsuchiya, Toshio, Mitsuya Otonari i Takashi Ariyama. "Internal friction and electrical properties in phosphate glasses containing transition metal oxides". Journal of Non-Crystalline Solids 95-96 (grudzień 1987): 1001–8. http://dx.doi.org/10.1016/s0022-3093(87)80709-3.
Pełny tekst źródłaZheng, Ming, Pengfei Guan, Yaping Qi i Litong Guo. "Straintronic effect on electronic transport and metal–insulator transition in correlated metal films by electric field". Applied Physics Letters 120, nr 16 (18.04.2022): 161603. http://dx.doi.org/10.1063/5.0082879.
Pełny tekst źródłaTerny, S., i M. A. Frechero. "Understanding how the mixed alkaline-earth effect tunes transition metal oxides-tellurite glasses properties". Physica B: Condensed Matter 583 (kwiecień 2020): 412054. http://dx.doi.org/10.1016/j.physb.2020.412054.
Pełny tekst źródłaRueff, J.-P., A. Mattila, J. Badro, G. Vankó i A. Shukla. "Electronic properties of transition-metal oxides under high pressure revealed by x-ray emission spectroscopy". Journal of Physics: Condensed Matter 17, nr 11 (5.03.2005): S717—S726. http://dx.doi.org/10.1088/0953-8984/17/11/001.
Pełny tekst źródłaTakano, M., R. Kanno i T. Takeda. "A chemical contribution to the search for novel electronic properties in transition metal oxides: LiNiO2". Materials Science and Engineering: B 63, nr 1-2 (sierpień 1999): 6–10. http://dx.doi.org/10.1016/s0921-5107(99)00044-6.
Pełny tekst źródłaAssadi, M. Hussein N., i Yasuteru Shigeta. "The effect of octahedral distortions on the electronic properties and magnetic interactions in O3 NaTMO2 compounds (TM = Ti–Ni & Zr–Pd)". RSC Advances 8, nr 25 (2018): 13842–49. http://dx.doi.org/10.1039/c8ra00576a.
Pełny tekst źródłaDong, M. D., J. Y. Shen, C. Y. Hong, P. X. Ran, R. H. He, H. W. Chen, Q. Y. Lu i J. Wu. "Modulation of the NiOx bandgap by controlling oxygen stoichiometry". Journal of Applied Physics 132, nr 17 (7.11.2022): 173901. http://dx.doi.org/10.1063/5.0109659.
Pełny tekst źródłaBachir Bouiadjra, Oussama, Ghouti Merad, Jean Marc Raulot, Hayet Si Abdelkader i Claude Esling. "Structural, Electronic and Mechanical Properties of Perovskite Oxides LaMO3 (M = Mn, Ni) Compounds in the High and Low Symmetric Phases by First Principle Calculation". Materials Science Forum 941 (grudzień 2018): 2300–2305. http://dx.doi.org/10.4028/www.scientific.net/msf.941.2300.
Pełny tekst źródłaChiromawa, Idris Muhammad, Amiruddin Shaari, Razif Razali, Summanuwa Timothy Ahams i Mikailu Abdullahi. "Ab initio Investigation of the Structure and Electronic Properties of Normal Spinel Fe2SiO4". Malaysian Journal of Fundamental and Applied Sciences 17, nr 2 (29.04.2021): 195–201. http://dx.doi.org/10.11113/mjfas.v17n2.2018.
Pełny tekst źródłaPiyanzina, I. I., Yu V. Lysogorskiy, D. A. Tayurskii i R. F. Mamin. "Electronic Properties of a Two-Dimensional Electron Gas at the Interface between Transition Metal Complex Oxides". Bulletin of the Russian Academy of Sciences: Physics 82, nr 3 (marzec 2018): 234–37. http://dx.doi.org/10.3103/s1062873818030188.
Pełny tekst źródłaPandey, Sumeet C., Xu Xu, Izaak Williamson, Eric B. Nelson i Lan Li. "Electronic and vibrational properties of transition metal-oxides: Comparison of GGA, GGA + U, and hybrid approaches". Chemical Physics Letters 669 (luty 2017): 1–8. http://dx.doi.org/10.1016/j.cplett.2016.12.005.
Pełny tekst źródłaOh, Sunyoung, You Kyung Kim, Chan Ho Jung, Won Hui Doh i Jeong Young Park. "Effect of the metal–support interaction on the activity and selectivity of methanol oxidation over Au supported on mesoporous oxides". Chemical Communications 54, nr 59 (2018): 8174–77. http://dx.doi.org/10.1039/c8cc04295k.
Pełny tekst źródłaYao, Yu, Dandan Sang, Liangrui Zou, Qinglin Wang i Cailong Liu. "A Review on the Properties and Applications of WO3 Nanostructure−Based Optical and Electronic Devices". Nanomaterials 11, nr 8 (22.08.2021): 2136. http://dx.doi.org/10.3390/nano11082136.
Pełny tekst źródłaZhang, Kai, Kai Du, Hao Liu, X. G. Zhang, Fanli Lan, Hanxuan Lin, Wengang Wei i in. "Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots". Proceedings of the National Academy of Sciences 112, nr 31 (20.07.2015): 9558–62. http://dx.doi.org/10.1073/pnas.1512326112.
Pełny tekst źródłaUlpe, Anna C., Katharina C. L. Bauerfeind i Thomas Bredow. "Influence of Spin State and Cation Distribution on Stability and Electronic Properties of Ternary Transition-Metal Oxides". ACS Omega 4, nr 2 (25.02.2019): 4138–46. http://dx.doi.org/10.1021/acsomega.8b03254.
Pełny tekst źródłaDemazeau, Gerard. "Stabilization of high transition metal valencies and correlations with electronic properties of oxides with the perovskite structure". Phase Transitions 58, nr 1-3 (15.08.1996): 43–56. http://dx.doi.org/10.1080/01411599608242393.
Pełny tekst źródłaGaggero, Elisa, Paola Calza, Erik Cerrato i Maria Cristina Paganini. "Cerium-, Europium- and Erbium-Modified ZnO and ZrO2 for Photocatalytic Water Treatment Applications: A Review". Catalysts 11, nr 12 (14.12.2021): 1520. http://dx.doi.org/10.3390/catal11121520.
Pełny tekst źródłaWang, Zhikai, Xiangtao Lin, Taoyong Liu, Lidan Liu, Xingxing Jiang, Yanjun Yu, Tianxiang Ning, Anxian Lu i Yong Jiang. "Thermal, chemical properties and structure evolution of medical neutral glasses modified by transition metal oxides". Journal of Non-Crystalline Solids 595 (listopad 2022): 121835. http://dx.doi.org/10.1016/j.jnoncrysol.2022.121835.
Pełny tekst źródłaHuang, Lujun, Alex Krasnok, Andrea Alú, Yiling Yu, Dragomir Neshev i Andrey E. Miroshnichenko. "Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides". Reports on Progress in Physics 85, nr 4 (8.03.2022): 046401. http://dx.doi.org/10.1088/1361-6633/ac45f9.
Pełny tekst źródłaRomanenko, A. I., G. E. Chebanova, Tingting Chen, Wenbin Su i Hongchao Wang. "Review of the thermoelectric properties of layered oxides and chalcogenides". Journal of Physics D: Applied Physics 55, nr 14 (3.12.2021): 143001. http://dx.doi.org/10.1088/1361-6463/ac3ce6.
Pełny tekst źródłaBecker, K. D. "Spectroscopicin situstudies of defect-dependent properties of transition metal oxides Defects, diffusion, and reaction kinetics". Philosophical Magazine A 68, nr 4 (październik 1993): 767–86. http://dx.doi.org/10.1080/01418619308213996.
Pełny tekst źródłaSalman, S. M., S. N. Salama i Ebrahim A. Mahdy. "Contribution of some transition metal oxides to crystallization and electro-thermal properties of glass-ceramics". Ceramics International 46, nr 9 (czerwiec 2020): 13724–31. http://dx.doi.org/10.1016/j.ceramint.2020.02.160.
Pełny tekst źródłaOmetto, Felipe B., Emilia A. Carbonio, Érico Teixeira-Neto i Hebe M. Villullas. "Changes induced by transition metal oxides in Pt nanoparticles unveil the effects of electronic properties on oxygen reduction activity". Journal of Materials Chemistry A 7, nr 5 (2019): 2075–86. http://dx.doi.org/10.1039/c8ta10642h.
Pełny tekst źródłaAndriotis, Antonis N., i Madhu Menon. "Electronic and magnetic properties of the CuO4- and Co2CuO10-complexes in diluted magnetic semiconductors and transition metal oxides". Materials Research Express 6, nr 8 (21.05.2019): 086108. http://dx.doi.org/10.1088/2053-1591/ab1620.
Pełny tekst źródłaHanzig, Florian, Josef Veselý, Mykhaylo Motylenko, Astrid Leuteritz, Hannes Mähne, Thomas Mikolajick i David Rafaja. "Composition profiles across MIMs for resistive switching studied by EDS and EELS". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C1456. http://dx.doi.org/10.1107/s205327331408543x.
Pełny tekst źródłaNavarrete, Eric, i Eduard Llobet. "Synthesis of p-n Heterojunctions via Aerosol Assisted Chemical Vapor Deposition to Enhance the Gas Sensing Properties of Tungsten Trioxide Nanowires: A Mini-Review". Journal of Nanoscience and Nanotechnology 21, nr 4 (1.04.2021): 2462–71. http://dx.doi.org/10.1166/jnn.2021.19105.
Pełny tekst źródłaCinthia, Arumainayagam Jemmy, Ratnavelu Rajeswarapalanichamy i Kombiah Iyakutti. "First Principles Study of Electronic Structure, Magnetic, and Mechanical Properties of Transition Metal Monoxides TMO(TM=Co and Ni)". Zeitschrift für Naturforschung A 70, nr 10 (1.10.2015): 797–804. http://dx.doi.org/10.1515/zna-2015-0216.
Pełny tekst źródłaPergament, A. L., V. P. Malinenko, L. A. Aleshina, E. L. Kazakova i N. A. Kuldin. "Electrical Switching in Thin Film Structures Based on Molybdenum Oxides". Journal of Experimental Physics 2014 (18.09.2014): 1–6. http://dx.doi.org/10.1155/2014/951297.
Pełny tekst źródła