Gotowa bibliografia na temat „Electron Cyclotron Resonance Plasmas”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Electron Cyclotron Resonance Plasmas”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Electron Cyclotron Resonance Plasmas"
Girard, A., D. Hitz, G. Melin i K. Serebrennikov. "Electron cyclotron resonance plasmas and electron cyclotron resonance ion sources: Physics and technology (invited)". Review of Scientific Instruments 75, nr 5 (maj 2004): 1381–88. http://dx.doi.org/10.1063/1.1675926.
Pełny tekst źródłaSan Andrés, E., A. Del Prado, A. J. Blázquez, I. Mártil i G. González-Díaz. "Procesos de oxidación de Si mediante plasma de resonancia ciclotrónica de electrones". Boletín de la Sociedad Española de Cerámica y Vidrio 43, nr 2 (30.04.2004): 379–82. http://dx.doi.org/10.3989/cyv.2004.v43.i2.546.
Pełny tekst źródłaGirard, A., C. Pernot, G. Melin i C. Lécot. "Modeling of electron-cyclotron-resonance-heated plasmas". Physical Review E 62, nr 1 (1.07.2000): 1182–89. http://dx.doi.org/10.1103/physreve.62.1182.
Pełny tekst źródłaOutten, C. A., J. C. Barbour i W. R. Wampler. "Characterization of electron cyclotron resonance hydrogen plasmas". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 9, nr 3 (maj 1991): 717–21. http://dx.doi.org/10.1116/1.577350.
Pełny tekst źródłaShufflebotham, P. K., i D. J. Thomson. "Stability and spatial characterization of electron cyclotron resonance processing plasmas". Canadian Journal of Physics 69, nr 3-4 (1.03.1991): 195–201. http://dx.doi.org/10.1139/p91-032.
Pełny tekst źródłaJiang, Wence, Daniel Verscharen, Seong-Yeop Jeong, Hui Li, Kristopher G. Klein, Christopher J. Owen i Chi Wang. "Velocity-space Signatures of Resonant Energy Transfer between Whistler Waves and Electrons in the Earth’s Magnetosheath". Astrophysical Journal 960, nr 1 (20.12.2023): 30. http://dx.doi.org/10.3847/1538-4357/ad0df8.
Pełny tekst źródłaHansen, S. K., S. K. Nielsen, J. Stober, J. Rasmussen, M. Salewski, M. Willensdorfer, M. Hoelzl i M. Stejner. "Parametric Decay Instabilities during Electron Cyclotron Resonance Heating of Fusion Plasmas, Problems and Possibilities". EPJ Web of Conferences 277 (2023): 01002. http://dx.doi.org/10.1051/epjconf/202327701002.
Pełny tekst źródłaCastagna, T. J., J. L. Shohet, D. D. Denton i N. Hershkowitz. "X rays in electron‐cyclotron‐resonance processing plasmas". Applied Physics Letters 60, nr 23 (8.06.1992): 2856–58. http://dx.doi.org/10.1063/1.106846.
Pełny tekst źródłaGoeckner, M. J., J. A. Meyer, G. ‐H Kim, J. ‐S Jenq, A. Matthews, J. W. Taylor i R. A. Breun. "Role of contaminants in electron cyclotron resonance plasmas". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 11, nr 5 (wrzesień 1993): 2543–52. http://dx.doi.org/10.1116/1.578605.
Pełny tekst źródłaRacz, Richárd, Sándor Biri i József Palinkas. "Visible Light Emission of Electron Cyclotron Resonance Plasmas". IEEE Transactions on Plasma Science 39, nr 11 (listopad 2011): 2462–63. http://dx.doi.org/10.1109/tps.2011.2150244.
Pełny tekst źródłaRozprawy doktorskie na temat "Electron Cyclotron Resonance Plasmas"
Peterschmitt, Simon. "Development of a Stable and Efficient Electron Cyclotron Resonance Thruster with Magnetic Nozzle". Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX053.
Pełny tekst źródłaPlasma thrusters are the subject of growing interest as a means for small satellite propulsion. Miniaturizations of mature technologies as well as innovative concepts have been proposed such as the electron-cyclotron resonance thruster with magnetic nozzle (ECRT). This thruster appears as a potentially disruptive technology because it is gridless, neutralizerless, and only requires one power supply. This work consists in the development of an ECRT with magnetic nozzle and its accompanying experimental test bench, able to accurately demonstrate high thruster efficiency during prolonged steady state operation. Previous studies on the ECRT were limited by a significant lack of accuracy on key measurements, due to the specific setup and technology needed for this thruster. The experimental procedure and the setup are thus heavily upgraded to improve the accuracy of experimental data. However, peculiarities of the magnetic nozzle complicate the interpretation of the ion current density measurements, thus our analysis of performance is mainly based on thrust balance measurements. Besides, thruster performance is shown to significantly increase when decreasing vacuum tank pressure down to 10-7 mbar Xenon, and facility effects are investigated by testing the thruster both at ONERA (France) and at JLU (Germany). Well aware of these experimental difficulties, we study the efficiency of the thruster as a function of neutral gas injection, magnetic field topology, and boundary conditions of the magnetic nozzle. In addition, we address erosion issues in two ways: first by a change of materials, and second by a change of coupling structure (coaxial, or circular waveguide). Waveguide coupling yields insufficient ion energies for space propulsion requirements but manufacturing the coaxial coupling structure with graphite appears to substantially mitigate erosion. These results enable to design and test a ~ 30 W and a ~ 200 W thruster consistently yielding state-of-the-art efficiencies as compared to other thruster types while having sufficient estimated lifetime. In order to shed light on the experimental outcomes, a new modelling approach is developed based on the study of electron trajectories and a Fokker-Planck heating model calculating the formation of the electron energy distribution function in the thruster
Rashid, Riyaz. "Low temperature electron cyclotron resonance plasma deposition of silicon dioxide". Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620439.
Pełny tekst źródłaMajeri, Nassim. "Production de rayons X par plasma ECR". Thesis, Orléans, 2009. http://www.theses.fr/2009ORLE2077/document.
Pełny tekst źródłaDuring this thesis we have characterised and developed a new X-ray source with an ECR plasma(electron cyclotron resonance) generating energetic electrons from 10 to 120 keV, which will emit adeceleration radiation (the Bremsstrahlung). The improvements of the installation permit to obtain astable source, which can work during one day (eight hours) without stop. In first part of theexperimental study we have studied and determined the optimal parameters of the source: pressure,micro-wave power and the magnetic configuration on the X radiation of the plasma. We also confirmedthe localisation of the energetic electron on a ring due to the magnetic configuration. The low intensityand the non punctual emission size of the X radiation, don’t allow the use of the source, so a target isinserted in the trajectory of the energetic electron to solve these two weaknesses.The main advantage of our source compared with X-ray tubes, is the absence of high voltage (20 to400 kV). For heating the electron, we use a 2,45 GHz wave, that is the industrial frequency authorizedfor the micro-wave oven, delivered by the magnetron. The simple elements that compose our sourceare less expensive than the classical X-ray tubes, due to mainly the high cost of the X-ray generator.Moreover, we don’t need a high vacuum, mandatory for the X-ray tubes; an ECRX operates at aresidual pressure of 0,1 mPa. And finally, we have a compact source. Applications will be various frommedical, like radiological, sterilization, to non-destructive industrial control
Kroely, Laurent. "Process and material challenges in the high rate deposition of microcrystalline silicon thin films and solar cells by Matrix Distributed Electron Cyclotron Resonance plasma". Phd thesis, Ecole Polytechnique X, 2010. http://pastel.archives-ouvertes.fr/pastel-00550241.
Pełny tekst źródłaGAUDIN, CHRISTELLE. "Emission de rayons x dans un plasma ecr (electron cyclotron resonance) en vue d'applications medicales". Toulouse 3, 1999. http://www.theses.fr/1999TOU30089.
Pełny tekst źródłaSakildien, Muneer. "Plasma characterisation of an electron cyclotron resonance ion source by means of x-ray spectroscopy". Thesis, University of the Western Cape, 2012. http://hdl.handle.net/11394/5212.
Pełny tekst źródłaThe ultimate aim of any multiply-charged ion source, like the Electron Cyclotron Resonance Ion Source, ECRIS, is the production of multiply-charged ions, in sufficiently large quantities. These multiplycharged ions, in the case of the ECRIS, are created by a step-by-step ionisation process, whereby neutral atoms are ionised by energetic electrons. The goal of this thesis was to gain an understanding of the relative importance of various ECRIS parameters on the production of these energetic electrons. This was done by measuring the bremsstrahlung continuum emitted by the mirror confined plasma of an ECR ion source. The focus of our study was to investigate the influence of neutral pressure, incident microwave power and magnetic field configuration on spectral temperature and electron density of the warm electron population of the ECRIS plasma. The thesis begins by familiarising the reader with various aspects of plasma physics as it relates to the measurements. The measurements were done with a high-purity germanium detector and processed with the DGF Pixie-4 module. Analyses of the measured spectra were done with subroutines written in Root. From the measured result, it was concluded that by increasing the incident microwave power from 50 W to 300 W, the spectral temperature increases by 14.01% for helium plasma and 7.88% for argon plasma. Evidence of saturation of spectral temperature and electron density with increasing microwave power was also noticed, as reported by other groups investigating plasma bremsstrahlung. The increase of spectral temperature with neutral pressure was found to be considerable, increasing by 20.23% as the neutral pressure in the plasma chamber of the ECRIS was decreased. This increase in spectral temperature was accompanied by a 40.33% decrease in electron density, which led us to conclude that the increase in spectral temperature was most likely due to an increase in the mean free path of the electrons. The influence of the magnetic field configuration on both spectral temperature and electron density was also investigated. During this investigation, one of the solenoid coil currents was increased, whilst keeping the other constant. This amounts to moving the plasma volume around axially in the plasma chamber of the ECRIS. This was found to significantly enhance the spectral temperature and this effect was attributed to more efficient heating of the electrons near the resonance zone. The electron density on the other hand was found to remain relatively constant, if one excludes the electron density as a result of one particularly setting of the solenoid coils. The decrease of electron density as a result of this particular setting of the solenoid coils enhanced the electron losses through the magnetic bottle. This is evidenced by the increase in photon counts as measured by our detector. The influence of neutral pressure, incident microwave power and magnetic field configuration on the extracted ion beam intensities was also investigated. This investigation led us to conclude that the mean charge state extracted increases with spectral temperature. This result was in agreement with those measured by other groups.
Jaju, Vishwas. "Device quality low temperature gate oxide growth using electron cyclotron resonance plasma oxidation of silicon". [Ames, Iowa : Iowa State University], 2008.
Znajdź pełny tekst źródłaZaïm-Bilheux, Hassina. "Design and initial comparative evaluation studies of conventional "surface" and new concept "volume"-type, all permanent magnet electron cyclotron resonance (ECR) ion sources". Versailles-St Quentin en Yvelines, 2003. http://www.theses.fr/2003VERS0008.
Pełny tekst źródłaECR ion sources are clearly the best choice of existing sources for the generation of CW beams of highly charged ions, and therefore, they are at a premium for high-energy accelerator-based applications. The technology of the source has slowly but steadily advanced over the past several years (improvement in plasma confinement; use of very high frequency microwave radiation; improvement in vacuum quality; supplementing their plasma discharges with cold electrons; biased disks; and gas mixing effect). Recently, it has been suggested that their performances can be significantly further enhanced by incresing the physical sizes of their ECR zones in relation to the sizes of their plasma volumes (spatial and frequency domain methods). A 6 GHz, all-permanent magnet ECR ion source with à large resonant plasma volume has been designed, constructed and initially tested at the Oak Ridge National Laboratory. The conventional minimum-B("surface") resonance conditions so that direct comparaisons of the performances of the two source types can be made under identical operating conditions. According to initial test results, the flat-B source performs better than its conventionnal-B conterpart, in terms of charge-state distribution and intensity within a particular charge-state. This is attributable to the very large ECR zones present in the source and their locations with respect to the launch direction of the RF power
パスクワ, ロメーロ カミール フェイス, i Camille Faith Pascua Romero. "Development of an electron cyclotron resonance plasma source with an internal antenna for carbon film deposition". Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13071665/?lang=0, 2018. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13071665/?lang=0.
Pełny tekst źródła博士(工学)
Doctor of Philosophy in Engineering
同志社大学
Doshisha University
Vialis, Théo. "Développement d’un propulseur plasma à résonance cyclotron électronique pour les satellites". Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS344.
Pełny tekst źródłaElectric propulsion is an alternative technology to the chemical propulsion that enables reducing propellant consumption for satellites. ONERA is developing an electric ECR thruster with a thrust around 1 mN and an electric power less than 50 W. The thruster creates a plasma by electron cyclotron resonance and accelerates it through a magnetic nozzle. In this thesis work, an optimization of the measurement diagnostics is done. The work also aims at identifying the important parameters for the performances of the thruster and at improving the understanding of underlying physics, in order to increase the thruster efficiency. Several prototypes have been developed and a thrust stand that can directly measure the thrust has been modified. Some parametric studies have been led and have shown that the thruster performance strongly depends on xenon mass-flow rate to microwave power ratio. It has also shown that the external conductor of the plasma source and the ambient pressure have a significant influence on the performances. Following a geometric optimization, a maximum total efficiency of more than 12% has been obtained. Separate measurements of the magnetic and thermal thrust have shown that the magnetic thrust is the main component of the total thrust. A 1D-3V PIC code has been used to simulate the behavior of the thruster. The analysis of the results has shown that the ECR heating and particle acceleration in the magnetic nozzle could be properly computed. The role of the parallel and perpendicular component of electron pressure has been evidenced by this work
Książki na temat "Electron Cyclotron Resonance Plasmas"
Guest, Gareth. Electron cyclotron heating of plasmas. Weinheim: Wiley-VCH, 2009.
Znajdź pełny tekst źródłaHansen, Flemming Ramskov. Electron cyclotron resonance heating of a high-density plasma. Roskilde, Denmark: Riso National Laboratory, 1986.
Znajdź pełny tekst źródłaJohn, Lohr, i World Scientific (Firm), red. Proceedings of the Fifteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating: Yosemite National Park, California, USA, 10-13 March 2008. Singapore: World Scientific, 2009.
Znajdź pełny tekst źródłaJohn, Lohr, i World Scientific (Firm), red. Proceedings of the Fifteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating: Yosemite National Park, California, USA, 10-13 March 2008. Singapore: World Scientific, 2008.
Znajdź pełny tekst źródłaWākushoppu Taka Ion Seiseiyō Kōkōritsu Kogata ECR Ion-gen (1999 KEK). Wākushoppu Taka ion seiseiyō kōkōritsu kogata ECR ion-gen: Proceedings of the Workshop on the Compact ECR Ion Source for Highly Charged Ions with High Efficiency, November 29-30, 1999, KEK, Tanashi, Japan. Tsukuba-shi: High Energy Accelerator Research Organization (KEK), 2000.
Znajdź pełny tekst źródłaKim, Danny. Dry passivation studies of GaAs(110) surfaces by gallium oxide thin films deposited by electron cyclotron resonance plasma reactive molecular beam epitaxy for optoelectronic device applications. Ottawa: National Library of Canada, 2001.
Znajdź pełny tekst źródłaGirka, Volodymyr, Igor Girka i Manfred Thumm. Surface Electron Cyclotron Waves in Plasmas. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17115-5.
Pełny tekst źródłaHellblom, Goran. Negative Hydrogen Ions From A Mirror Electron Cyclotron Resonance Source. Nykoping: Studsvik Energiteknik AB, 1985.
Znajdź pełny tekst źródłaInternational, Workshop on E. C. R. Ion Sources (16th 2004 Berkeley California). Electron cyclotron resonance sources: 16th International Workshop on ECR Ion Sources ECRIS'04, Berkeley, California, 26-30 September 2004. Melville, N.Y: American Institute of Physics, 2005.
Znajdź pełny tekst źródłaTopical, Conference on Radio Frequency Power in Plasmas (17th 2007 Clearwater Florida). Radio frequency power in plasmas: 17th Topical Conference on Radio Frequency Power in Plasmas : Clearwater, Florida, 7-9 May 2007. Melville, N.Y: American Institute of Physics, 2007.
Znajdź pełny tekst źródłaCzęści książek na temat "Electron Cyclotron Resonance Plasmas"
Joseph, J., Y. Z. Hu i E. A. Irene. "Kinetics of Oxidation of Silicon by Electron Cyclotron Resonance Plasmas". W The Physics and Chemistry of SiO2 and the Si-SiO2 Interface 2, 55–62. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1588-7_7.
Pełny tekst źródłaKaganovich, I., M. Misina, A. Bogaerts i R. Gijbels. "Investigation of the Electron Distribution Functions in Low Pressure Electron Cyclotron Resonance Discharges". W Advanced Technologies Based on Wave and Beam Generated Plasmas, 543–44. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-0633-9_57.
Pełny tekst źródłaPankove, J., V. Hornback, S. Sritharan, J. Wilson, S. Asher, R. Dhere, J. Goral i in. "Electron-Cyclotron-Resonance Plasma Deposition of Carbon onto Silicon". W Springer Proceedings in Physics, 60–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75048-9_12.
Pełny tekst źródłaBurke, Rudolf R. "Applications of Distributed Electron Cyclotron Resonance (DECR) to Plasma-Surface Interaction". W Microwave Discharges, 503–8. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1130-8_32.
Pełny tekst źródłaMasumoto, Hiroshi, Takashi Goto, Yoshitomo Honda, Osamu Suzuki i Keiichi Sasaki. "Preparation of Titania Films on Implant Titanium by Electron Cyclotron Resonance Plasma Oxidation". W Key Engineering Materials, 565–68. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.565.
Pełny tekst źródłaMasumoto, Hiroshi, Takashi Goto, Yusuke Orii, Yoshitomo Honda, Osamu Suzuki i Keiichi Sasaki. "Osteoconductivity of Titania Films Prepared by Electron-Cyclotron-Resonance Plasma Oxidation of Implant Titanium". W Bioceramics 20, 717–20. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-457-x.717.
Pełny tekst źródłaAgius, B., M. C. Hugon, N. Jiang, F. Plais, D. Pribat i T. Carriere. "Comparison of SiO2 Thin Film Properties Deposited by Distributed Electron Cyclotron Resonance Plasma Using Two Different Oxidant Gases: N2O or O2". W The Physics and Chemistry of SiO2 and the Si-SiO2 Interface 2, 157–64. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1588-7_17.
Pełny tekst źródłaShirkov, Grigori D., i Günter Zschornack. "Electron-Cyclotron Resonance Ion Sources". W Electron Impact Ion Sources for Charged Heavy Ions, 123–52. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-663-09896-6_5.
Pełny tekst źródłaGirka, Volodymyr, Igor Girka i Manfred Thumm. "Surface Electron Cyclotron TM-Mode Waves". W Surface Electron Cyclotron Waves in Plasmas, 45–116. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17115-5_3.
Pełny tekst źródłaGirka, Volodymyr, Igor Girka i Manfred Thumm. "Surface Electron Cyclotron X-Mode Waves". W Surface Electron Cyclotron Waves in Plasmas, 117–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17115-5_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Electron Cyclotron Resonance Plasmas"
Niu, X., H. Liu, B. X. Zhang i D. R. Yu. "The influence of operating parameters on the dynamic characteristics of minimized electron cyclotron resonance ion thruster for space gravitational wave detection". W 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10626950.
Pełny tekst źródłaWang, L., i X. M. Zhu. "A novel concept, “excited-state-system”: applicable to determining the active-particle number density in nitrogen, oxygen and carbon tetrafluoride electron cyclotron resonance plasma". W 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10627130.
Pełny tekst źródłaGottscho, Richard A., Toshiki Nakano, Nader Sadeghi, Dennis J. Trevor i Rod W. Boswell. "Ion velocity distributions in electron cyclotron resonance plasmas". W Process Module Metrology, Control and Clustering, redaktorzy Cecil J. Davis, Irving P. Herman i Terry R. Turner. SPIE, 1992. http://dx.doi.org/10.1117/12.56650.
Pełny tekst źródłaMichel, G., P. Brand, H. Braune, V. Erckmann, G. Gantenbein, W. Kasparek, H. P. Laqua i in. "Electron Cyclotron Resonance Heating for W7-X". W RADIO FREQUENCY POWER IN PLASMAS: Proceedings of the 18th Topical Conference. AIP, 2009. http://dx.doi.org/10.1063/1.3273813.
Pełny tekst źródłaSathyanarayana, K. "Electron Cyclotron Resonance heating system on Tokamak Aditya". W RADIO FREQUENCY POWER IN PLASMAS:14th Topical Conference. AIP, 2001. http://dx.doi.org/10.1063/1.1424193.
Pełny tekst źródłaJin, Shu, Richard Molnar, Donald Y. Jong i Theodore D. Moustakas. "Characterization of electron cyclotron resonance plasmas for diamond deposition". W San Diego '92, redaktorzy Albert Feldman i Sandor Holly. SPIE, 1992. http://dx.doi.org/10.1117/12.130760.
Pełny tekst źródłaRam, Abhay K., i Abraham Bers. "Electron Cyclotron Resonance Heating of Plasmas in Spherical Tori". W Proceedings of the 12th Joint Workshop. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705082_0021.
Pełny tekst źródłaMascali, D., S. Gammino, L. Celona, G. Ciavola, Cynthia K. Phillips i James R. Wilson. "RF Heating in Electron Cyclotron Resonance Ion Sources". W RADIO FREQUENCY POWER IN PLASMAS: Proceedings of the 19th Topical Conference. AIP, 2011. http://dx.doi.org/10.1063/1.3665026.
Pełny tekst źródłaJiang, Y., X. Chang, J. L. Hirshfield, M. Fedurin, M. Palmer i W. Stern. "Compact Electron Cyclotron Resonance Accelerator". W 2023 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2023. http://dx.doi.org/10.1109/icops45740.2023.10480943.
Pełny tekst źródłaMeis, C., A. Compant La Fontaine, P. Louvet i R. L. Meyer. "Electron Cyclotron Resonance Plasma Heating in a Flaring Magnetic Field Zone". W Radio frequency power in plasmas. AIP, 1992. http://dx.doi.org/10.1063/1.41640.
Pełny tekst źródłaRaporty organizacyjne na temat "Electron Cyclotron Resonance Plasmas"
Tsai, C. C., L. A. Berry, S. M. Gorbatkin, H. H. Haselton, J. B. Roberto, D. E. Schechter i W. L. Stirling. Potential applications of an electron cyclotron resonance multicusp plasma source. Office of Scientific and Technical Information (OSTI), marzec 1990. http://dx.doi.org/10.2172/7097370.
Pełny tekst źródłaVernon, R. J. High-power microwave transmission systems for electron-cyclotron-resonance plasma heating. Office of Scientific and Technical Information (OSTI), sierpień 1991. http://dx.doi.org/10.2172/5182806.
Pełny tekst źródłaVernon, R. High-power microwave transmission systems for electron cyclotron resonance plasma heating. Office of Scientific and Technical Information (OSTI), sierpień 1990. http://dx.doi.org/10.2172/6647695.
Pełny tekst źródłaBerry, L. A., S. M. Gorbatkin i R. L. Rhoades. Cu deposition using a permanent magnet electron cyclotron resonance microwave plasma source. Office of Scientific and Technical Information (OSTI), wrzesień 1994. http://dx.doi.org/10.2172/10178692.
Pełny tekst źródłaHu, Y. Z., J. Joseph i E. A. Irene. An In-Situ Spectroscopic Ellipsometry Study of the Electron Cyclotron Resonance Plasma Oxidation of Silicon and Interfacial. Fort Belvoir, VA: Defense Technical Information Center, listopad 1991. http://dx.doi.org/10.21236/ada242833.
Pełny tekst źródłaFruchtman, A., K. Riedel, H. Weitzner i D. B. Batchelor. Strong cyclotron damping of electron cyclotron waves in nearly parallel stratified plasmas. Office of Scientific and Technical Information (OSTI), wrzesień 1986. http://dx.doi.org/10.2172/7242112.
Pełny tekst źródłaPardo, R., i Physics. Optimization of electron-cyclotron-resonance charge-breeder ions : Final CRADA Report. Office of Scientific and Technical Information (OSTI), październik 2009. http://dx.doi.org/10.2172/968489.
Pełny tekst źródłaFelch, K., C. Hess, H. Huey, E. Jongewaard, H. Jory, J. Neilson, R. Pendleton i M. Tsirulnikov. Progress in producing megawatt gyrotrons for ECR (electron cyclotron resonance) heating. Office of Scientific and Technical Information (OSTI), październik 1990. http://dx.doi.org/10.2172/6570521.
Pełny tekst źródłaChoe, W., M. Ono i C. S. Chang. Temperature anisotropy in a cyclotron resonance heated tokamak plasma and the generation of poloidal electric field. Office of Scientific and Technical Information (OSTI), listopad 1994. http://dx.doi.org/10.2172/10196164.
Pełny tekst źródłaRen, Chuang. A study of tearing modes via electron cyclotron emission from tokamak plasmas. Office of Scientific and Technical Information (OSTI), lipiec 1998. http://dx.doi.org/10.2172/677101.
Pełny tekst źródła