Artykuły w czasopismach na temat „Electrolyte solide hybride”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Electrolyte solide hybride”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Kanai, Yamato, Koji Hiraoka, Mutsuhiro Matsuyama i Shiro Seki. "Chemically and Physically Cross-Linked Inorganic–Polymer Hybrid Solvent-Free Electrolytes". Batteries 9, nr 10 (26.09.2023): 492. http://dx.doi.org/10.3390/batteries9100492.
Pełny tekst źródłaChoi, Kyoung Hwan, Eunjeong Yi, Kyeong Joon Kim, Seunghwan Lee, Myung-Soo Park, Hansol Lee i Pilwon Heo. "(Invited) Pragmatic Approach and Challenges of All Solid State Batteries: Hybrid Solid Electrolyte for Technical Innovation". ECS Meeting Abstracts MA2023-01, nr 6 (28.08.2023): 988. http://dx.doi.org/10.1149/ma2023-016988mtgabs.
Pełny tekst źródłaLI, X. D., X. J. YIN, C. F. LIN, D. W. ZHANG, Z. A. WANG, Z. SUN i S. M. HUANG. "INFLUENCE OF I2 CONCENTRATION AND CATIONS ON THE PERFORMANCE OF QUASI-SOLID-STATE DYE-SENSITIZED SOLAR CELLS WITH THERMOSETTING POLYMER GEL ELECTROLYTE". International Journal of Nanoscience 09, nr 04 (sierpień 2010): 295–99. http://dx.doi.org/10.1142/s0219581x10006831.
Pełny tekst źródłaLv, Wenjing, Kaidong Zhan, Xuecheng Ren, Lu Chen i Fan Wu. "Comparing Charge Dynamics in Organo-Inorganic Halide Perovskite: Solid-State versus Solid-Liquid Junctions". Journal of Nanoelectronics and Optoelectronics 19, nr 2 (1.02.2024): 121–28. http://dx.doi.org/10.1166/jno.2024.3556.
Pełny tekst źródłaLiao, Cheng Hung, Chia-Chin Chen, Ru-Jong Jeng i Nae-Lih (Nick) Wu. "Application of Artificial Interphase on Ni-Rich Cathode Materials Via Hybrid Ceramic-Polymer Electrolyte in All Solid State Batteries". ECS Meeting Abstracts MA2023-01, nr 6 (28.08.2023): 1050. http://dx.doi.org/10.1149/ma2023-0161050mtgabs.
Pełny tekst źródłaVillaluenga, Irune, Kevin H. Wujcik, Wei Tong, Didier Devaux, Dominica H. C. Wong, Joseph M. DeSimone i Nitash P. Balsara. "Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries". Proceedings of the National Academy of Sciences 113, nr 1 (22.12.2015): 52–57. http://dx.doi.org/10.1073/pnas.1520394112.
Pełny tekst źródłaZaman, Wahid, Nicholas Hortance, Marm B. Dixit, Vincent De Andrade i Kelsey B. Hatzell. "Visualizing percolation and ion transport in hybrid solid electrolytes for Li–metal batteries". Journal of Materials Chemistry A 7, nr 41 (2019): 23914–21. http://dx.doi.org/10.1039/c9ta05118j.
Pełny tekst źródłaZahiri, Beniamin, Chadd Kiggins, Dijo Damien, Michael Caple, Arghya Patra, Carlos Juarez Yescaz, John B. Cook i Paul V. Braun. "Hybrid Halide Solid Electrolytes and Bottom-up Cell Assembly Enable High Voltage Solid-State Lithium Batteries". ECS Meeting Abstracts MA2022-01, nr 2 (7.07.2022): 327. http://dx.doi.org/10.1149/ma2022-012327mtgabs.
Pełny tekst źródłaMohanty, Debabrata, Shu-Yu Chen i I.-Ming Hung. "Effect of Lithium Salt Concentration on Materials Characteristics and Electrochemical Performance of Hybrid Inorganic/Polymer Solid Electrolyte for Solid-State Lithium-Ion Batteries". Batteries 8, nr 10 (9.10.2022): 173. http://dx.doi.org/10.3390/batteries8100173.
Pełny tekst źródłaGu, Sui, Xiao Huang, Qing Wang, Jun Jin, Qingsong Wang, Zhaoyin Wen i Rong Qian. "A hybrid electrolyte for long-life semi-solid-state lithium sulfur batteries". Journal of Materials Chemistry A 5, nr 27 (2017): 13971–75. http://dx.doi.org/10.1039/c7ta04017b.
Pełny tekst źródłaWoolley, Henry Michael, i Nella Vargas-Barbosa. "Electrochemical Characterization of Thiophosphate- Ionic Liquid Hybrid Lithium Electrolytes Against Li Metal". ECS Meeting Abstracts MA2023-01, nr 6 (28.08.2023): 986. http://dx.doi.org/10.1149/ma2023-016986mtgabs.
Pełny tekst źródłaCHENG, Xiong, Man LI, Yang Li, Seunghyun Song, Sowjanya Vallem i Joonho Bae. "Novel DNA-Based Polymer Solid Electrolytes for Lithium-Ion Batteries". ECS Meeting Abstracts MA2024-01, nr 2 (9.08.2024): 350. http://dx.doi.org/10.1149/ma2024-012350mtgabs.
Pełny tekst źródłaSpencer Jolly, Dominic, Dominic L. R. Melvin, Isabella D. R. Stephens, Rowena H. Brugge, Shengda D. Pu, Junfu Bu, Ziyang Ning i in. "Interfaces between Ceramic and Polymer Electrolytes: A Comparison of Oxide and Sulfide Solid Electrolytes for Hybrid Solid-State Batteries". Inorganics 10, nr 5 (26.04.2022): 60. http://dx.doi.org/10.3390/inorganics10050060.
Pełny tekst źródłaSpencer Jolly, Dominic, Dominic L. R. Melvin, Isabella D. R. Stephens, Rowena H. Brugge, Shengda D. Pu, Junfu Bu, Ziyang Ning i in. "Interfaces between Ceramic and Polymer Electrolytes: A Comparison of Oxide and Sulfide Solid Electrolytes for Hybrid Solid-State Batteries". Inorganics 10, nr 5 (26.04.2022): 60. http://dx.doi.org/10.3390/inorganics10050060.
Pełny tekst źródłaVargas-Barbosa, Nella Marie, Sebastian Puls i Henry Michael Woolley. "Hybrid Material Concepts for Thiophosphate-Based Solid-State Batteries". ECS Meeting Abstracts MA2023-01, nr 6 (28.08.2023): 984. http://dx.doi.org/10.1149/ma2023-016984mtgabs.
Pełny tekst źródłaShah, Rajesh, Vikram Mittal i Angelina Mae Precilla. "Challenges and Advancements in All-Solid-State Battery Technology for Electric Vehicles". J 7, nr 3 (27.06.2024): 204–17. http://dx.doi.org/10.3390/j7030012.
Pełny tekst źródłaThangadurai, Venkataraman. "(Invited) Lithium – Sulfur Batteries". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 545. http://dx.doi.org/10.1149/ma2022-024545mtgabs.
Pełny tekst źródłaThangadurai, Venkataraman. "(Invited) Garnet Solid Electrolytes for Advanced All-Solid-State Li Metal Batteries". ECS Meeting Abstracts MA2022-02, nr 47 (9.10.2022): 1759. http://dx.doi.org/10.1149/ma2022-02471759mtgabs.
Pełny tekst źródłaZhai, Yanfang, Wangshu Hou, Zongyuan Chen, Zhong Zeng, Yongmin Wu, Wensheng Tian, Xiao Liang i in. "A hybrid solid electrolyte for high-energy solid-state sodium metal batteries". Applied Physics Letters 120, nr 25 (20.06.2022): 253902. http://dx.doi.org/10.1063/5.0095923.
Pełny tekst źródłaGerstenberg, Jessica, Dominik Steckermeier, Arno Kwade i Peter Michalowski. "Effect of Mixing Intensity on Electrochemical Performance of Oxide/Sulfide Composite Electrolytes". Batteries 10, nr 3 (7.03.2024): 95. http://dx.doi.org/10.3390/batteries10030095.
Pełny tekst źródłaKim, Ji Sook, Sun Hwa Lee i Dong Wook Shin. "Fabrication of Hybrid Solid Electrolyte by LiPF6 Liquid Electrolyte Infiltration into Nano-Porous Na2O-SiO2-B2O3 Glass Membrane". Solid State Phenomena 124-126 (czerwiec 2007): 1027–30. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1027.
Pełny tekst źródłaWang, Linsheng. "Development of Novel High Li-Ion Conductivity Hybrid Electrolytes of Li10GeP2S12 (LGPS) and Li6.6La3Zr1.6Sb0.4O12 (LLZSO) for Advanced All-Solid-State Batteries". Oxygen 1, nr 1 (15.07.2021): 16–21. http://dx.doi.org/10.3390/oxygen1010003.
Pełny tekst źródłaKirchberger, Anna Maria, Patrick Walke i Tom Nilges. "Effect of Nanostructured Inorganic Ceramic Filler on Poly(ethylene oxide)-Based Solid Polymer Electrolytes". ECS Meeting Abstracts MA2023-01, nr 6 (28.08.2023): 991. http://dx.doi.org/10.1149/ma2023-016991mtgabs.
Pełny tekst źródłaMéry, Adrien, Steeve Rousselot, David Lepage, David Aymé-Perrot i Mickael Dollé. "Limiting Factors Affecting the Ionic Conductivities of LATP/Polymer Hybrid Electrolytes". Batteries 9, nr 2 (28.01.2023): 87. http://dx.doi.org/10.3390/batteries9020087.
Pełny tekst źródłaMuñoz, Bianca K., Jorge Lozano, María Sánchez i Alejandro Ureña. "Hybrid Solid Polymer Electrolytes Based on Epoxy Resins, Ionic Liquid, and Ceramic Nanoparticles for Structural Applications". Polymers 16, nr 14 (18.07.2024): 2048. http://dx.doi.org/10.3390/polym16142048.
Pełny tekst źródłaJi, Xiaoyu, Yiruo Zhang, Mengxue Cao, Quanchao Gu, Honglei Wang, Jinshan Yu, Zi-Hao Guo i Xingui Zhou. "Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries". Journal of Advanced Ceramics 11, nr 6 (13.05.2022): 835–61. http://dx.doi.org/10.1007/s40145-022-0580-8.
Pełny tekst źródłaGiffin, Guinevere A., Mara Goettlinger, Hendrik Bohn, Simone Peters, Mario Weller, Alexander Naßmacher, Timo Brändel i Alex Friesen. "Development of a Polymer-Based Silicon-NMC Solid-State Cell". ECS Meeting Abstracts MA2023-02, nr 2 (22.12.2023): 373. http://dx.doi.org/10.1149/ma2023-022373mtgabs.
Pełny tekst źródłaRyu, Kun, Kyungbin Lee, Hyun Ju, Jinho Park, Ilan Stern i Seung Woo Lee. "Ceramic/Polymer Hybrid Electrolyte with Enhanced Interfacial Contact for All-Solid-State Lithium Batteries". ECS Meeting Abstracts MA2022-02, nr 7 (9.10.2022): 2621. http://dx.doi.org/10.1149/ma2022-0272621mtgabs.
Pełny tekst źródłaYan, Shuo, Chae-Ho Yim, Ali Merati, Elena A. Baranova, Yaser Abu-Lebdeh i Arnaud Weck. "Interfacial Challenge for Solid-State Lithium Batteries- Liquid Addition". ECS Meeting Abstracts MA2023-01, nr 6 (28.08.2023): 1010. http://dx.doi.org/10.1149/ma2023-0161010mtgabs.
Pełny tekst źródłaZhang, L. X., Y. Z. Li, L. W. Shi, R. J. Yao, S. S. Xia, Y. Wang i Y. P. Yang. "Electrospun Polyethylene Oxide (PEO)-Based Composite polymeric nanofiber electrolyte for Li-Metal Battery". Journal of Physics: Conference Series 2353, nr 1 (1.10.2022): 012004. http://dx.doi.org/10.1088/1742-6596/2353/1/012004.
Pełny tekst źródłaLee, Yan Ying, i Andre Weber. "Harmonization of Testing Procedures for All Solid State Batteries". ECS Meeting Abstracts MA2023-02, nr 2 (22.12.2023): 340. http://dx.doi.org/10.1149/ma2023-022340mtgabs.
Pełny tekst źródłaYan, Shuo, Chae-Ho Yim, Vladimir Pankov, Mackenzie Bauer, Elena Baranova, Arnaud Weck, Ali Merati i Yaser Abu-Lebdeh. "Perovskite Solid-State Electrolytes for Lithium Metal Batteries". Batteries 7, nr 4 (7.11.2021): 75. http://dx.doi.org/10.3390/batteries7040075.
Pełny tekst źródłaShah, Vaidik, i Yong Lak Joo. "Rationally Designed in-Situ Gelled Polymer-Ceramic Hybrid Electrolyte Enables Superior Performance and Stability in Quasi-Solid-State Lithium-Sulfur Batteries". ECS Meeting Abstracts MA2023-02, nr 4 (22.12.2023): 535. http://dx.doi.org/10.1149/ma2023-024535mtgabs.
Pełny tekst źródłaTsurumaki, Akiko, Rossella Rettaroli, Lucia Mazzapioda i Maria Assunta Navarra. "Inorganic–Organic Hybrid Electrolytes Based on Al-Doped Li7La3Zr2O12 and Ionic Liquids". Applied Sciences 12, nr 14 (21.07.2022): 7318. http://dx.doi.org/10.3390/app12147318.
Pełny tekst źródłaJiang, Wen, Lingling Dong, Shuanghui Liu, Bing Ai, Shuangshuang Zhao, Weimin Zhang, Kefeng Pan i Lipeng Zhang. "Improvement of the Interface between the Lithium Anode and a Garnet-Type Solid Electrolyte of Lithium Batteries Using an Aluminum-Nitride Layer". Nanomaterials 12, nr 12 (12.06.2022): 2023. http://dx.doi.org/10.3390/nano12122023.
Pełny tekst źródłaTeshima, Katsuya, Hajime Wagata i Shuji Oishi. "All-Crystal-State Lithium-Ion Batteries: Innovation Inspired by Novel Flux Coating Method." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2013, CICMT (1.09.2013): 000187–91. http://dx.doi.org/10.4071/cicmt-wp41.
Pełny tekst źródłaBabkova, Tatiana, Rudolf Kiefer i Quoc Bao Le. "Hybrid Electrolyte Based on PEO and Ionic Liquid with In Situ Produced and Dispersed Silica for Sustainable Solid-State Battery". Sustainability 16, nr 4 (19.02.2024): 1683. http://dx.doi.org/10.3390/su16041683.
Pełny tekst źródłaKarahan Toprakci, Hatice Aylin, i Ozan Toprakci. "Recent Advances in New-Generation Electrolytes for Sodium-Ion Batteries". Energies 16, nr 7 (31.03.2023): 3169. http://dx.doi.org/10.3390/en16073169.
Pełny tekst źródłaOkos, Alexandru, Cristina Florentina Ciobota, Adrian Mihail Motoc i Radu-Robert Piticescu. "Review on Synthesis and Properties of Lithium Lanthanum Titanate". Materials 16, nr 22 (8.11.2023): 7088. http://dx.doi.org/10.3390/ma16227088.
Pełny tekst źródłaLisovskyi, Ivan, Mykyta Barykin, Sergii Solopan i Anatolii Belous. "FEATURES OF PHASE TRANSFORMATIONS IN THE SYNTHESIS OF COMPLEX LITHIUM-CONDUCTING OXIDE MATERIALS". Ukrainian Chemistry Journal 87, nr 9 (25.10.2021): 14–34. http://dx.doi.org/10.33609/2708-129x.87.09.2021.14-34.
Pełny tekst źródłaLin, Ruifan, Yingmin Jin, Yumeng Li, Xuebai Zhang i Yueping Xiong. "Recent Advances in Ionic Liquids—MOF Hybrid Electrolytes for Solid-State Electrolyte of Lithium Battery". Batteries 9, nr 6 (6.06.2023): 314. http://dx.doi.org/10.3390/batteries9060314.
Pełny tekst źródłaLiu, Yue, Qintao Sun, Peiping Yu, Bingyun Ma, Hao Yang, Jiayi Zhang, Miao Xie i Tao Cheng. "In situ formation of circular and branched oligomers in a localized high concentration electrolyte at the lithium-metal solid electrolyte interphase: a hybrid ab initio and reactive molecular dynamics study". Journal of Materials Chemistry A 10, nr 2 (2022): 632–39. http://dx.doi.org/10.1039/d1ta08182a.
Pełny tekst źródłaToghyani, Somayeh, Florian Baakes, Ningxin Zhang, Helmut Kühnelt, Walter Cistjakov i Ulrike Krewer. "(Digital Presentation) Model-Assisted Design of Oxide-Based All-Solid-State Li-Batteries with Hybrid Electrolytes for Aviation". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 484. http://dx.doi.org/10.1149/ma2022-024484mtgabs.
Pełny tekst źródłaThangadurai, Venkataraman, Sanoop Palakkathodi Kammampata i Hirotoshi Yamada. "(Invited) Garnet-Type Electrolytes for All-Solid-State Lithium Metal Batteries". ECS Meeting Abstracts MA2022-02, nr 1 (9.10.2022): 37. http://dx.doi.org/10.1149/ma2022-02137mtgabs.
Pełny tekst źródłaBertrand, Marc, Steeve Rousselot, David Aymé-Perrot i Mickaël Dollé. "Assembling an All-Solid-State Ceramic Battery: Assessment of Chemical and Thermal Compatibility of Solid Ceramic Electrolytes and Active Material Using High Temperature X-Ray Diffraction". ECS Meeting Abstracts MA2022-02, nr 7 (9.10.2022): 2421. http://dx.doi.org/10.1149/ma2022-0272421mtgabs.
Pełny tekst źródłaLoudeche, Maxime, Rémy Rouxhet i Joris Proost. "Development of a New Type of Electrochemical Reactor for Low Temperature Lime and Cement Production". ECS Meeting Abstracts MA2023-01, nr 24 (28.08.2023): 1603. http://dx.doi.org/10.1149/ma2023-01241603mtgabs.
Pełny tekst źródłaBerling, Sabrina, Jose Manuel Hidalgo, Sotirios Mavrikis, Nagaraj Patil, Enrique Garcia - Quismondo, Jesus Palma i Carlos Ponce de Leon. "Adaptation of a Vanadium Redox Flow Battery for Thermal Applications Using a Solid Capacity Booster". ECS Meeting Abstracts MA2023-02, nr 59 (22.12.2023): 2851. http://dx.doi.org/10.1149/ma2023-02592851mtgabs.
Pełny tekst źródłaLim, Seung, Juyoung Moon, Uoon Baek, Jae Lee, Youngjin Chae i Jung Park. "Shape-Controlled TiO2 Nanomaterials-Based Hybrid Solid-State Electrolytes for Solar Energy Conversion with a Mesoporous Carbon Electrocatalyst". Nanomaterials 11, nr 4 (3.04.2021): 913. http://dx.doi.org/10.3390/nano11040913.
Pełny tekst źródłaTam, Vincent, i Jesse S. Wainright. "Considerations for Ionic Diffusion in Slurry Electrolytes for Redox Flow Batteries". ECS Meeting Abstracts MA2023-01, nr 3 (28.08.2023): 784. http://dx.doi.org/10.1149/ma2023-013784mtgabs.
Pełny tekst źródłaSankara Raman, Ashwin, Samik Jhulki, Billy Johnson, Aashray Narla i Gleb Yushin. "Facile in-Situ Polymerized Polymer Electrolytes in All Solid-State Lithium-Ion Batteries". ECS Meeting Abstracts MA2022-02, nr 3 (9.10.2022): 316. http://dx.doi.org/10.1149/ma2022-023316mtgabs.
Pełny tekst źródła