Artykuły w czasopismach na temat „Electrolyte liquid”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Electrolyte liquid”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Kamaluddin, Norashima, Famiza Abdul Latif i Chan Chin Han. "The Effect of HCl Concentration on the Ionic Conductivity of Liquid PMMA Oligomer". Advanced Materials Research 1107 (czerwiec 2015): 200–204. http://dx.doi.org/10.4028/www.scientific.net/amr.1107.200.
Pełny tekst źródłaCho, Jungsang, Gautam Ganapati Yadav, Meir Weiner, Jinchao Huang, Aditya Upreti, Xia Wei, Roman Yakobov i in. "Hydroxyl Conducting Hydrogels Enable Low-Maintenance Commercially Sized Rechargeable Zn–MnO2 Batteries for Use in Solar Microgrids". Polymers 14, nr 3 (20.01.2022): 417. http://dx.doi.org/10.3390/polym14030417.
Pełny tekst źródłaGajewski, Piotr, Wiktoria Żyła, Klaudia Kazimierczak i Agnieszka Marcinkowska. "Hydrogel Polymer Electrolytes: Synthesis, Physicochemical Characterization and Application in Electrochemical Capacitors". Gels 9, nr 7 (28.06.2023): 527. http://dx.doi.org/10.3390/gels9070527.
Pełny tekst źródłaRu, Chen. "Research on the regeneration technology of etching waste solution". E3S Web of Conferences 338 (2022): 01051. http://dx.doi.org/10.1051/e3sconf/202233801051.
Pełny tekst źródłaLI, X. D., X. J. YIN, C. F. LIN, D. W. ZHANG, Z. A. WANG, Z. SUN i S. M. HUANG. "INFLUENCE OF I2 CONCENTRATION AND CATIONS ON THE PERFORMANCE OF QUASI-SOLID-STATE DYE-SENSITIZED SOLAR CELLS WITH THERMOSETTING POLYMER GEL ELECTROLYTE". International Journal of Nanoscience 09, nr 04 (sierpień 2010): 295–99. http://dx.doi.org/10.1142/s0219581x10006831.
Pełny tekst źródłaEldesoky, A., A. J. Louli, A. Benson i J. R. Dahn. "Cycling Performance of NMC811 Anode-Free Pouch Cells with 65 Different Electrolyte Formulations". Journal of The Electrochemical Society 168, nr 12 (1.12.2021): 120508. http://dx.doi.org/10.1149/1945-7111/ac39e3.
Pełny tekst źródłaBhardwaj, Ravindra Kumar, i David Zitoun. "Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)–Sulfur Batteries". Batteries 9, nr 2 (3.02.2023): 110. http://dx.doi.org/10.3390/batteries9020110.
Pełny tekst źródłaReber, David, Oleg Borodin, Maximilian Becker, Daniel Rentsch, Johannes H. Thienenkamp, Rabeb Grissa, Wengao Zhao i in. "Water/Ionic Liquid/Succinonitrile Hybrid Electrolytes". ECS Meeting Abstracts MA2022-02, nr 2 (9.10.2022): 161. http://dx.doi.org/10.1149/ma2022-022161mtgabs.
Pełny tekst źródłaYahya, Wan Zaireen Nisa, Pang Zhen Hong, Wan Zul Zahran Wan Mohd Zain i Norani Muti Mohamed. "Tripropyl Chitosan Iodide-Based Gel Polymer Electrolyte as Quasi Solid-State Dye Sensitized Solar Cells". Materials Science Forum 997 (czerwiec 2020): 69–76. http://dx.doi.org/10.4028/www.scientific.net/msf.997.69.
Pełny tekst źródłaPark, Habin, Anthony Engler, Nian Liu i Paul Kohl. "Dynamic Anion Delocalization of Single-Ion Conducting Polymer Electrolyte for High-Performance of Solid-State Lithium Metal Batteries". ECS Meeting Abstracts MA2022-02, nr 3 (9.10.2022): 227. http://dx.doi.org/10.1149/ma2022-023227mtgabs.
Pełny tekst źródłaStolz, Lukas, Martin Winter i Johannes Kasnatscheew. "Perspective on the mechanism of mass transport-induced (tip-growing) Li dendrite formation by comparing conventional liquid organic solvent with solid polymer-based electrolytes". Journal of Electrochemical Science and Engineering 13, nr 5 (9.08.2023): 715–24. http://dx.doi.org/10.5599/jese.1724.
Pełny tekst źródłaGeorge, Sweta Mariam, Debalina Deb, Haijin Zhu, S. Sampath i Aninda J. Bhattacharyya. "Spectroscopic investigations of solvent assisted Li-ion transport decoupled from polymer in a gel polymer electrolyte". Applied Physics Letters 121, nr 22 (28.11.2022): 223903. http://dx.doi.org/10.1063/5.0112647.
Pełny tekst źródłaKim, Ji Sook, Sun Hwa Lee i Dong Wook Shin. "Fabrication of Hybrid Solid Electrolyte by LiPF6 Liquid Electrolyte Infiltration into Nano-Porous Na2O-SiO2-B2O3 Glass Membrane". Solid State Phenomena 124-126 (czerwiec 2007): 1027–30. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1027.
Pełny tekst źródłaZailani, N. A. M., F. A. Latif, Z. S. M. Al Shukaili, Pramod K. Singh, S. F. M. Zamri i M. A. A. Rani. "Ionic Liquid Encapsulated Poly (Methyl Methacrylate) Electrolyte Film in Electrical Double Layer Capacitor". International Journal of Emerging Technology and Advanced Engineering 12, nr 11 (1.11.2022): 89–97. http://dx.doi.org/10.46338/ijetae1122_10.
Pełny tekst źródłaGaysin, A. F., F. M. Gaysin, L. N. Bagautdinova, A. A. Khafizov, R. I. Valiev i E. V. Gazeeva. "Plasma-electrolyte discharges in a gas-liquid medium for the production of hydrogen". Power engineering: research, equipment, technology 23, nr 2 (21.05.2021): 27–35. http://dx.doi.org/10.30724/1998-9903-2021-23-2-27-35.
Pełny tekst źródłaHuang, Qianqian, Xin Liang, Bing Liu i Huaxia Deng. "Research Progress of Shear Thickening Electrolyte Based on Liquid–Solid Conversion Mechanism". Batteries 9, nr 7 (19.07.2023): 384. http://dx.doi.org/10.3390/batteries9070384.
Pełny tekst źródłaZhu, Na, Kun Zhang, Feng Wu, Ying Bai i Chuan Wu. "Ionic Liquid-Based Electrolytes for Aluminum/Magnesium/Sodium-Ion Batteries". Energy Material Advances 2021 (17.02.2021): 1–29. http://dx.doi.org/10.34133/2021/9204217.
Pełny tekst źródłaDietrich, Paul M., Lydia Gehrlein, Julia Maibach i Andreas Thissen. "Probing Lithium-Ion Battery Electrolytes with Laboratory Near-Ambient Pressure XPS". Crystals 10, nr 11 (20.11.2020): 1056. http://dx.doi.org/10.3390/cryst10111056.
Pełny tekst źródłaGupta, Sandhya, Pramod K. Singh i B. Bhattacharya. "Low-viscosity ionic liquid–doped solid polymer electrolytes". High Performance Polymers 30, nr 8 (30.05.2018): 986–92. http://dx.doi.org/10.1177/0954008318778763.
Pełny tekst źródłaZheng, Ming Sen, Jia Jia Chen i Quan Feng Dong. "The Research of Electrolyte on Lithium/Sulfur Battery". Advanced Materials Research 476-478 (luty 2012): 1763–66. http://dx.doi.org/10.4028/www.scientific.net/amr.476-478.1763.
Pełny tekst źródłaSelf, Julian, Helen K. Bergstrom, Kara D. Fong, Bryan D. McCloskey i Kristin A. Persson. "Theoretical Prediction of Freezing Point Depression of Lithium-Ion Battery Electrolytes". ECS Meeting Abstracts MA2022-01, nr 2 (7.07.2022): 194. http://dx.doi.org/10.1149/ma2022-012194mtgabs.
Pełny tekst źródłaKim, Eunhwan, Juyeon Han, Seokgyu Ryu, Youngkyu Choi i Jeeyoung Yoo. "Ionic Liquid Electrolytes for Electrochemical Energy Storage Devices". Materials 14, nr 14 (16.07.2021): 4000. http://dx.doi.org/10.3390/ma14144000.
Pełny tekst źródłaChen, Shipeng, Li Feng, Xiaoji Wang, Yange Fan, Yubin Ke, Lin Hua, Zheng Li, Yimin Hou i Baoyu Xue. "Supramolecular Thixotropic Ionogel Electrolyte for Sodium Batteries". Gels 8, nr 3 (20.03.2022): 193. http://dx.doi.org/10.3390/gels8030193.
Pełny tekst źródłaYahya, Wan Zaireen Nisa, Wong Theen Meng, Mehboob Khatani, Adel Eskandar Samsudin i Norani Muti Mohamed. "Bio-based chitosan/PVdF-HFP polymer-blend for quasi-solid state electrolyte dye-sensitized solar cells". e-Polymers 17, nr 5 (28.08.2017): 355–61. http://dx.doi.org/10.1515/epoly-2016-0305.
Pełny tekst źródłade Souza, J. Pedro, Alexei A. Kornyshev i Martin Z. Bazant. "Polar liquids at charged interfaces: A dipolar shell theory". Journal of Chemical Physics 156, nr 24 (28.06.2022): 244705. http://dx.doi.org/10.1063/5.0096439.
Pełny tekst źródłaWahyusi, Kindriari Nurma, Ika Nawang Puspitawati i Abdul Rachman Wirayudha. "The Deep Eutectic Solvent in Used Batteries as an Electrolyte Additive for Potential Chitosan Solid Electrolyte Membrane". ASEAN Journal of Chemical Engineering 23, nr 2 (30.08.2023): 167. http://dx.doi.org/10.22146/ajche.77318.
Pełny tekst źródłaManceriu, Laura, Anil Kumar Bharwal, Nathan Daem, Jennifer Dewalque, Pierre Colson, Frederic Boschini i Rudi Cloots. "Printability of (Quasi-)Solid Polysiloxane Electrolytes for Online Dye-Sensitized Solar Cell Fabrication". Coatings 13, nr 7 (27.06.2023): 1164. http://dx.doi.org/10.3390/coatings13071164.
Pełny tekst źródłaKomorsky-Lovrić, Šebojka, i Milivoj Lovrić. "Kinetics of electrode reaction coupled to ion transfer across the liquid/liquid interface". Open Chemistry 3, nr 2 (1.06.2005): 216–29. http://dx.doi.org/10.2478/bf02475992.
Pełny tekst źródłaVo, T. D., H. V. Nguyen, Q. D. Nguyen, Q. Phung, V. M. Tran i P. L. M. Le. "Carbonate Solvents and Ionic Liquid Mixtures as an Electrolyte to Improve Cell Safety in Sodium-Ion Batteries". Journal of Chemistry 2019 (24.07.2019): 1–10. http://dx.doi.org/10.1155/2019/7980204.
Pełny tekst źródłaGélinas, Bruno, Thomas Bibienne, Mickaël Dollé i Dominic Rochefort. "Electrochemistry and transport properties of electrolytes modified with ferrocene redox-active ionic liquid additives". Canadian Journal of Chemistry 98, nr 9 (wrzesień 2020): 554–63. http://dx.doi.org/10.1139/cjc-2020-0042.
Pełny tekst źródłaLiu, Feng-Quan, Wen-Peng Wang, Ya-Xia Yin, Shuai-Feng Zhang, Ji-Lei Shi, Lu Wang, Xu-Dong Zhang i in. "Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries". Science Advances 4, nr 10 (październik 2018): eaat5383. http://dx.doi.org/10.1126/sciadv.aat5383.
Pełny tekst źródłaTian, Lanlan, Lian Xiong, Xuefang Chen, Haijun Guo, Hairong Zhang i Xinde Chen. "Enhanced Electrochemical Properties of Gel Polymer Electrolyte with Hybrid Copolymer of Organic Palygorskite and Methyl Methacrylate". Materials 11, nr 10 (24.09.2018): 1814. http://dx.doi.org/10.3390/ma11101814.
Pełny tekst źródłaGupta, Ashish, Amrita Jain, Manju Kumari i Santosh K. Tripathi. "Electrical, electrochemical and structural studies of a chlorine-derived ionic liquid-based polymer gel electrolyte". Beilstein Journal of Nanotechnology 12 (18.11.2021): 1252–61. http://dx.doi.org/10.3762/bjnano.12.92.
Pełny tekst źródłaSyarif, Nirwan, Dedi Rohendi i Nyimas Febrika Sya'baniah. "Electrochemical Evaluation of Lithium-Ion Battery with Anode of Layer-Reduced Biocarbon and Cathode of LiFePO4". International Journal of Sustainable Transportation Technology 2, nr 2 (31.10.2019): 58–62. http://dx.doi.org/10.31427/ijstt.2019.2.2.4.
Pełny tekst źródłaKüttinger, Michael, Paulette A. Loichet Torres, Emeline Meyer, Peter Fischer i Jens Tübke. "Systematic Study of Quaternary Ammonium Cations for Bromine Sequestering Application in High Energy Density Electrolytes for Hydrogen Bromine Redox Flow Batteries". Molecules 26, nr 9 (6.05.2021): 2721. http://dx.doi.org/10.3390/molecules26092721.
Pełny tekst źródłaLin, Yuan, Maio Wang i Xu Rui Xiao. "Investigation of PEO-Imidazole Ionic Liquid Oligomer and Polymer Electrolytes for Dye-Sensitized Solar Cells". Key Engineering Materials 451 (listopad 2010): 41–61. http://dx.doi.org/10.4028/www.scientific.net/kem.451.41.
Pełny tekst źródłaSing Liow, Kai, Coswald Stephen Sipaut, Rachel Fran Mansa, Mee Ching Ung i Shamsi Ebrahimi. "Effect of PEG Molecular Weight on the Polyurethane-Based Quasi-Solid-State Electrolyte for Dye-Sensitized Solar Cells". Polymers 14, nr 17 (1.09.2022): 3603. http://dx.doi.org/10.3390/polym14173603.
Pełny tekst źródłaLi, Jak, Jinli Qiao i Keryn Lian. "Investigation of polyacrylamide based hydroxide ion-conducting electrolyte and its application in all-solid electrochemical capacitors". Sustainable Energy & Fuels 1, nr 7 (2017): 1580–87. http://dx.doi.org/10.1039/c7se00266a.
Pełny tekst źródłaPeng, Chenhui, i Oleg Lavrentovich. "Liquid Crystals-Enabled AC Electrokinetics". Micromachines 10, nr 1 (10.01.2019): 45. http://dx.doi.org/10.3390/mi10010045.
Pełny tekst źródłaTerada, Shoshi, Kohei Ikeda, Kazuhide Ueno, Kaoru Dokko i Masayoshi Watanabe. "Liquid Structures and Transport Properties of Lithium Bis(fluorosulfonyl)amide/Glyme Solvate Ionic Liquids for Lithium Batteries". Australian Journal of Chemistry 72, nr 2 (2019): 70. http://dx.doi.org/10.1071/ch18270.
Pełny tekst źródłaKang, Seul-Gi, Dae-Hyun Kim, Bo-Joong Kim i Chang-Bun Yoon. "Sn-Substituted Argyrodite Li6PS5Cl Solid Electrolyte for Improving Interfacial and Atmospheric Stability". Materials 16, nr 7 (29.03.2023): 2751. http://dx.doi.org/10.3390/ma16072751.
Pełny tekst źródłaYuh, C. Y., A. Franco, L. Chen, A. Hilmi, R. Venkataraman i M. Farooque. "Electrolyte Management in Liquid Electrolyte Fuel Cells". ECS Transactions 65, nr 1 (2.02.2015): 75–86. http://dx.doi.org/10.1149/06501.0075ecst.
Pełny tekst źródłaSadeghzadeh, Rozita, Mickaël Dollé, David Lepage, Arnaud Prébé, Gabrielle Foran i David Aymé-Perrot. "(Digital Presentation) Post-Treatment Study on Blended Polymer for Solid-State Lithium Batteries". ECS Meeting Abstracts MA2022-02, nr 7 (9.10.2022): 2468. http://dx.doi.org/10.1149/ma2022-0272468mtgabs.
Pełny tekst źródłaJun, H. K., M. A. Careem i A. K. Arof. "A Suitable Polysulfide Electrolyte for CdSe Quantum Dot-Sensitized Solar Cells". International Journal of Photoenergy 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/942139.
Pełny tekst źródłaGiffin, Guinevere A. "Ionic liquid-based electrolytes for “beyond lithium” battery technologies". Journal of Materials Chemistry A 4, nr 35 (2016): 13378–89. http://dx.doi.org/10.1039/c6ta05260f.
Pełny tekst źródłaGreen, Matthew, Hovnan Simonyan, Katty Kaydanik i Joseph A. Teprovich. "Influence of Solvent System on the Electrochemical Properties of a closo-Borate Electrolyte Salt". Applied Sciences 12, nr 5 (22.02.2022): 2273. http://dx.doi.org/10.3390/app12052273.
Pełny tekst źródłaMa, Junfeng, Zhiyan Wang, Jinghua Wu, Zhi Gu, Xing Xin i Xiayin Yao. "In Situ Solidified Gel Polymer Electrolytes for Stable Solid−State Lithium Batteries at High Temperatures". Batteries 9, nr 1 (30.12.2022): 28. http://dx.doi.org/10.3390/batteries9010028.
Pełny tekst źródłaIvol, Flavien, Marina Porcher, Arunabh Ghosh, Johan Jacquemin i Fouad Ghamouss. "Phenylacetonitrile (C6H5CH2CN) Ionic Liquid Blends as Alternative Electrolytes for Safe and High-Performance Supercapacitors". Molecules 25, nr 11 (10.06.2020): 2697. http://dx.doi.org/10.3390/molecules25112697.
Pełny tekst źródłaDaud, N. M. A. C., N. Tamchek i I. M. NOOR. "Preparation and Characterization of GG-LiCF3SO3-DMSO Gel Polymer Electrolyte for Potential Lithium-Ion Battery Application". Journal of Advanced Thermal Science Research 9 (20.10.2022): 69–83. http://dx.doi.org/10.15377/2409-5826.2022.09.6.
Pełny tekst źródłaTsai, Wan-Yu, Xi Chen, Sergiy Kalnaus, Ritu Sahore i Andrew S. Westover. "Li Morphology Evolution during Initial Cycling in a Gel Composite Electrolyte". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 526. http://dx.doi.org/10.1149/ma2022-024526mtgabs.
Pełny tekst źródła