Gotowa bibliografia na temat „Electrodics and Electrocatalysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Electrodics and Electrocatalysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Electrodics and Electrocatalysis"
Zou, Yiming, Ronn Goei, Su-Ann Ong, Amanda Jiamin ONG, Jingfeng Huang i Alfred Iing Yoong TOK. "Development of Core-Shell Rh@Pt and Rh@Ir Nanoparticle Thin Film Using Atomic Layer Deposition for HER Electrocatalysis Applications". Processes 10, nr 5 (18.05.2022): 1008. http://dx.doi.org/10.3390/pr10051008.
Pełny tekst źródłaWeng, Yu-Ching, Cheng-Jen Ho, Hui-Hsuan Chiao i Chen-Hao Wang. "Pt3Ni/C and Pt3Co/C cathodes as electrocatalysts for use in oxygen sensors and proton exchange membrane fuel cells". Zeitschrift für Naturforschung B 75, nr 12 (16.12.2020): 1029–35. http://dx.doi.org/10.1515/znb-2020-0116.
Pełny tekst źródłaKudur Jayaprakash, Gururaj, B. E. Kumara Swamy, Roberto Flores-Moreno i Kayim Pineda-Urbina. "Theoretical and Cyclic Voltammetric Analysis of Asparagine and Glutamine Electrocatalytic Activities for Dopamine Sensing Applications". Catalysts 13, nr 1 (3.01.2023): 100. http://dx.doi.org/10.3390/catal13010100.
Pełny tekst źródłaXu, Zhiying, Minghui Hao, Xin Liu, Jingjing Ma, Liang Wang, Chunhu Li i Wentai Wang. "Co(OH)2 Nanoflowers Decorated α-NiMoO4 Nanowires as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting". Catalysts 12, nr 11 (11.11.2022): 1417. http://dx.doi.org/10.3390/catal12111417.
Pełny tekst źródłaTang, Chaoyun, Tewodros Asefa i Nianqiang Wu. "Metal-Coordinated Hydrogels As Efficient Oxygen Evolution Electrocatalysts". ECS Meeting Abstracts MA2022-02, nr 48 (9.10.2022): 1798. http://dx.doi.org/10.1149/ma2022-02481798mtgabs.
Pełny tekst źródłaBalint, Lorena-Cristina, Iosif Hulka i Andrea Kellenberger. "Pencil Graphite Electrodes Decorated with Platinum Nanoparticles as Efficient Electrocatalysts for Hydrogen Evolution Reaction". Materials 15, nr 1 (23.12.2021): 73. http://dx.doi.org/10.3390/ma15010073.
Pełny tekst źródłaKim, Sang Kyum, Ji Yun Park, Soon Choel Hwang, Do Kyun Lee, Sang Heon Lee, Moon Hee Han i Young Woo Rhee. "Radiolytic Preparation of Electrocatalysts with Pt-Co and Pt-Sn Nanoparticles for a Proton Exchange Membrane Fuel Cell". Journal of Nanomaterials 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/960379.
Pełny tekst źródłaOwhoso, Fiki V., i David G. Kwabi. "Effect of Covalent Modification on Proton-Coupled Electron Transfer at Quinone-Functionalized Carbon Electrodes". ECS Meeting Abstracts MA2022-02, nr 57 (9.10.2022): 2171. http://dx.doi.org/10.1149/ma2022-02572171mtgabs.
Pełny tekst źródłaDíaz-Sainz, Guillermo, Manuel Alvarez-Guerra i Angel Irabien. "Continuous Electrochemical Reduction of CO2 to Formate: Comparative Study of the Influence of the Electrode Configuration with Sn and Bi-Based Electrocatalysts". Molecules 25, nr 19 (28.09.2020): 4457. http://dx.doi.org/10.3390/molecules25194457.
Pełny tekst źródłaGarcia-Contreras, M. A., S. M. Fernandez-Valverde i J. R. Vargas-Garcia. "PtNi and CoNi Film Electrocatalysts Prepared by MOCVD for the Oxygen Reduction Reaction in Alkaline Media". Journal of New Materials for Electrochemical Systems 14, nr 2 (5.04.2011): 81–85. http://dx.doi.org/10.14447/jnmes.v14i2.114.
Pełny tekst źródłaRozprawy doktorskie na temat "Electrodics and Electrocatalysis"
Cleghorn, Simon John Charles. "Electrocatalytic hydrogenation at palladium electrodes". Thesis, University of Southampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332771.
Pełny tekst źródłaPrzeworski, J. E. "The development of chemically modified electrodes for electrocatalysis". Thesis, Imperial College London, 1985. http://hdl.handle.net/10044/1/37822.
Pełny tekst źródłaWilliams, Mario. "Characterization of platinum-group metal nanophase electrocatalysts employed in the direct methanol fuel cell and solid-polymer electrolyte electrolyser". Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&.
Pełny tekst źródłaWalker, Rachel Claire. "In-situ spectroscopic studies of electrocatalytic electrodes". Thesis, University of Bath, 1998. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284347.
Pełny tekst źródłaChen, Youjiang. "Fundamental Aspects of Electrocatalysis at Metal and Metal Oxide Electrodes". Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1284390270.
Pełny tekst źródłaSheppard, Sally-Ann. "Characterisation of dispersed, platinum-coated fuel cell electrodes". Thesis, University of Portsmouth, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264837.
Pełny tekst źródłaHeim, Matthias. "Elaboration, characterisation and applications of porous electrodes". Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14373/document.
Pełny tekst źródłaIn the present work template-assisted electrodeposition was used to produce highly ordered macro- and mesoporous electrodes. Colloidal crystals obtained by the Langmuir-Blodgett (LB) technique were infiltrated using potentiostatic electrodeposition of metals and conducting polymers followed by removal of the inorganic template. In the resulting macroporous electrodes, the pore diameter was controlled by the size of the silica spheres, while the thickness could be controlled by temporal current oscillations caused by a periodic change of the electroactive area in the template. Various colloidal superstructures were produced in this way leading to electrodes with on purpose integrated planar defects or well-defined gradients in terms of pore size. Furthermore we showed that alternating multilayers of different metals could be deposited with high accuracy into a colloidal monolayer altering the optical properties of the material. Successful miniaturization of the process was demonstrated by elaborating macroporous gold microcylinders showing besides higher active surface areas also increased catalytic activity towards the reduction of oxygen compared to their flat homologues. In this context a miniaturized electrochemical cell composed of two macroporous gold electrodes was also proposed. Finally, mesoporous platinum films were deposited on microelectrode arrays (MEAs) using lyotropic liquid crystals as templates. The increased surface area of mesoporous compared to smooth electrodes led to improved performance in the recording of neuronal activity with MEAs owing to a reduced noise level
Sharma, Vivek Vishal <1987>. "Development and Application of Chemically Modified Electrodes for Sensing and Electrocatalysis". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amsdottorato.unibo.it/8147/1/Vivek_Sharma_PhD%20Thesis.pdf.
Pełny tekst źródłaBarron, Olivia. "Catalyst Coated Membranes (CCMs) for polymerelectrolyte Membrane (PEM) fuel cells". Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_4757_1307336145.
Pełny tekst źródłaThe main objective of this work it to produce membrane electrode assemblies (MEAs) that have improved performance over MEAs produced by the conventional manner, by producing highly efficient, electroactive, uniform catalyst layers with lower quantities of platinum electrocatalyst. The catalyst coated membrane (CCM) method was used to prepare the MEAs for the PEM fuel cell as it has been reported that this method of MEA fabrication can improve the performance of PEM fuel cells. The MEAs performances were evaluated using polarisation studies on a single cell. A comparison of polarisation curves between CCM MEAs and MEAs produced in the conventional manner illustrated that CCM MEAs have improved performance at high current densities (>
800 mA/cm2).
Baez, Baez Victor Antonio. "Metal oxide coated electrodes for oxygen reduction". Thesis, University of Southampton, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241271.
Pełny tekst źródłaKsiążki na temat "Electrodics and Electrocatalysis"
Workshop on Structural Effects in Electrocatalysis and Oxygen Electrochemistry (1991 Case Western Reserve University). Proceedings of the Workshop on Structural Effects in Electrocatalysis and Oxygen Electrochemistry, October 29-November 1, 1991, Case Center for Electrochemical Sciences, Case Western Reserve University. Redaktorzy Scherson D, United States. Dept. of Energy. Office of Propulsion Systems. i Electrochemical Society. Pennington, NJ: Electrochemical Society, 1992.
Znajdź pełny tekst źródłaXing, Wei, Jiujun Zhang i Geping Yin. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Elsevier Science & Technology Books, 2014.
Znajdź pełny tekst źródłaXing, Wei, Jiujun Zhang i Geping Yin. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Elsevier, 2014.
Znajdź pełny tekst źródłaOxygen electrode bifunctional electrocatalyst NiCoO spinel. [Washington, DC]: National Aeronautics and Space Administration, 1988.
Znajdź pełny tekst źródłaWieckowski, Andrzej, Paul A. Christensen i Shi-Gang Sun. In-Situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis. Elsevier Science & Technology Books, 2011.
Znajdź pełny tekst źródła-G, Sun S., Christensen P. A. 1960- i Więckowski Andrzej 1945-, red. In-situ spectroscopic studies of adsorption at the electrode and electrocatalysis. Amsterdam: Elsevier, 2007.
Znajdź pełny tekst źródła(Editor), Shi-Gang Sun, Paul A. Christensen (Editor) i Andrzej Wieckowski (Editor), red. In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis. Elsevier Science, 2007.
Znajdź pełny tekst źródłaScholz, Fritz, Uwe Schröder i Rubin Gulaboski. Electrochemistry of Immobilized Particles and Droplets: Experiments with Three-Phase Electrodes. Springer, 2015.
Znajdź pełny tekst źródłaScholz, Fritz, Uwe Schröder, Rubin Gulaboski i Antonio Doménech-Carbó. Electrochemistry of Immobilized Particles and Droplets: Experiments with Three-Phase Electrodes. Springer International Publishing AG, 2014.
Znajdź pełny tekst źródłaScholz, Fritz, Uwe Schröder, Rubin Gulaboski i Antonio Doménech-Carbó. Electrochemistry of Immobilized Particles and Droplets: Experiments with Three-Phase Electrodes. Springer, 2016.
Znajdź pełny tekst źródłaCzęści książek na temat "Electrodics and Electrocatalysis"
Kita, Hideaki, Hiroshi Nakajima i Katsuaki Shimazu. "Electrocatalysis on SPE Membrane Electrodes". W Electrochemistry in Transition, 619–28. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-9576-2_38.
Pełny tekst źródłaSaikrithika, Sairaman, Yesudas K. Yashly i Annamalai Senthil Kumar. "Quinones and Organic Dyes Based Redox-Active Organic Molecular Compounds Immobilized Surfaces for Electrocatalysis and Bioelectrocatalysis Applications". W Organic Electrodes, 415–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98021-4_22.
Pełny tekst źródłaTucceri, Ricardo. "Applications of Nonconducting Poly(o-aminophenol) Films in Bioelectrochemistry and Electrocatalysis". W Poly(o-aminophenol) Film Electrodes, 137–68. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02114-0_3.
Pełny tekst źródłaHao, Feng, i Hong Lin. "Electrocatalysts for T-Mediated Dye-Sensitized Solar Cells". W Counter Electrodes for Dye-sensitized and Perovskite Solar Cells, 367–93. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527813636.ch15.
Pełny tekst źródłaYe, Meidan, Qun Liu, James Iocozzia, Xiaodan Hong, Xiangyang Liu i Zhiqun Lin. "Polycomponent Electrocatalysts for I-Mediated Dye-Sensitized Solar Cells". W Counter Electrodes for Dye-sensitized and Perovskite Solar Cells, 323–48. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527813636.ch13.
Pełny tekst źródłaTheerthagiri, Jayaraman, i Jagannathan Madhavan. "Pt Electrocatalysts for I-Mediated Dye-Sensitized Solar Cells". W Counter Electrodes for Dye-sensitized and Perovskite Solar Cells, 27–46. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527813636.ch2.
Pełny tekst źródłaKavan, Ladislav. "Graphene Electrocatalysts for I-Mediated Dye-Sensitized Solar Cells". W Counter Electrodes for Dye-sensitized and Perovskite Solar Cells, 123–53. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527813636.ch6.
Pełny tekst źródłaZhou, Xiao, Chen Wang, Yangliang Zhang, Wen Fang, Yuzhi Hou, Chen Zhang, Xiaodong Wang i Sining Yun. "Cell Efficiency Table of DSSCs with Various Counter Electrode Electrocatalysts". W Counter Electrodes for Dye-sensitized and Perovskite Solar Cells, 531–617. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527813636.app1.
Pełny tekst źródłaAnuratha, K. S., i J. Y. Lin. "Carbon Nanotube Electrocatalysts for I-Mediated Dye-Sensitized Solar Cells". W Counter Electrodes for Dye-sensitized and Perovskite Solar Cells, 93–121. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527813636.ch5.
Pełny tekst źródłaBattisti, A., L. Nanni, G. Battaglin i Ch Comninellis. "Oxide Electrocatalysts. The Case of RuO2-Based Film Electrodes". W New Promising Electrochemical Systems for Rechargeable Batteries, 197–211. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1643-2_15.
Pełny tekst źródłaStreszczenia konferencji na temat "Electrodics and Electrocatalysis"
Haussener, Sophia. "Multi-physical transport in structured (photo)electrodes". W International Conference on Electrocatalysis for Energy Applications and Sustainable Chemicals. València: Fundació Scito, 2020. http://dx.doi.org/10.29363/nanoge.ecocat.2020.028.
Pełny tekst źródłaFan, Hong Jin. "Smart Electrodes for electrocatalytic water splitting". W The 7th International Multidisciplinary Conference on Optofluidics 2017. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/optofluidics2017-04275.
Pełny tekst źródłaOla, Oluwafunmilola, i Yanqiu Zhu. "Two-Dimensional WS2/g-C3N4 Layered Heterostructures With Enhanced Pseudocapacitive and Electrocatalytic Properties". W ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23137.
Pełny tekst źródła"A novel Modified Electrodes as Methanol Fuel Cell Nano-Electrocatalysts". W 2nd International Conference on Research in Science, Engineering and Technology. International Institute of Engineers, 2014. http://dx.doi.org/10.15242/iie.e0314525.
Pełny tekst źródłaJiang, Tao, Yan Wang, Ghislain Montavon, Hanlin Liao, Taikai Liu, Regine Reissner i Syed Asif Ansar. "Engineered Thermal Sprayed Oxygen Evolution Electrode for Hydrogen Production by Alkaline Water Electrolysis". W ITSC2019, redaktorzy F. Azarmi, K. Balani, H. Koivuluoto, Y. Lau, H. Li, K. Shinoda, F. Toma, J. Veilleux i C. Widener. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.itsc2019p0388.
Pełny tekst źródłaSun, Gongquan, Guoxiong Wang, Suli Wang, Shiyou Yan, Shaohua Yang i Qin Xin. "Studies on Electrocatalysts, MEAs and Compact Stacks of Direct Alcohol Fuel Cells". W ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97244.
Pełny tekst źródłaFuchs, Timo, Valentín Briega-Martos, Jakub Drnec, Jan O. Fehrs, Chentian Yuan, David A. Harrington, Federico Calle-Vallejo, Serhiy Cherevko i Olaf M. Magnussen. "In situ surface X-ray diffraction study of the oxide growth and dissolution of Pt single crystal electrodes". W International Conference on Frontiers in Electrocatalytic Transformations. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.interect.2022.019.
Pełny tekst źródłade Ruiter, Jim. "Probing the Dynamics of Low-Overpotential CO2‑to-CO Activation on Copper Electrodes with Time-Resolved Raman Spectroscopy". W International Conference on Frontiers in Electrocatalytic Transformations. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.interect.2022.011.
Pełny tekst źródłaKas, Recep, Andrew G. Star, Kailun Yang, Tim Van Cleve, K. C. Neyerlin i Wilson A. Smith. "The Influence of Along-the-Channel Gradients on Spatioactivitiy and Spatioselectivity of Gas Diffusion Electrodes during Electrochemical CO2 Reduction". W International Conference on Electrocatalysis for Energy Applications and Sustainable Chemicals. València: Fundació Scito, 2020. http://dx.doi.org/10.29363/nanoge.ecocat.2020.027.
Pełny tekst źródłaAghasibeig, M., R. Wuthrich, C. Moreau i A. Dolatabadi. "Electrocatalytic Behavior of Nickel Coatings Formed by APS and SPS Processes". W ITSC 2014, redaktorzy R. S. Lima, A. Agarwal, M. M. Hyland, Y. C. Lau, G. Mauer, A. McDonald i F. L. Toma. DVS Media GmbH, 2014. http://dx.doi.org/10.31399/asm.cp.itsc2014p0739.
Pełny tekst źródłaRaporty organizacyjne na temat "Electrodics and Electrocatalysis"
Yeager, E., i S. Gupta. Electrocatalysts for oxygen electrodes. Office of Scientific and Technical Information (OSTI), październik 1989. http://dx.doi.org/10.2172/7011191.
Pełny tekst źródłaYeager, E. B. Electrocatalysts for oxygen electrodes. Office of Scientific and Technical Information (OSTI), październik 1991. http://dx.doi.org/10.2172/5850798.
Pełny tekst źródłaYeager, E. Electrocatalysts for oxygen electrodes. Final report. Office of Scientific and Technical Information (OSTI), luty 1993. http://dx.doi.org/10.2172/10181908.
Pełny tekst źródłaYeager, E. B. Electrocatalysts for oxygen electrodes. Final report. Office of Scientific and Technical Information (OSTI), październik 1991. http://dx.doi.org/10.2172/10129829.
Pełny tekst źródłaYeager, E. Electrocatalysts for oxygen electrodes: Final report. Office of Scientific and Technical Information (OSTI), wrzesień 1988. http://dx.doi.org/10.2172/6158269.
Pełny tekst źródłaYeager, E. Electrocatalysts for oxygen electrodes: Final report. Office of Scientific and Technical Information (OSTI), styczeń 1988. http://dx.doi.org/10.2172/5261534.
Pełny tekst źródłaKim, T.-W. Structure and Electrocatalysis of Sputtered RuPt Thin-film Electrodes. Office of Scientific and Technical Information (OSTI), luty 2005. http://dx.doi.org/10.2172/839765.
Pełny tekst źródłaFeng, Jianren. Anodic oxygen-transfer electrocatalysis at iron-doped lead dioxide electrodes. Office of Scientific and Technical Information (OSTI), styczeń 1994. http://dx.doi.org/10.2172/10190344.
Pełny tekst źródłaHsiao, Yun-Lin. Electrocatalysis of anodic oxygen-transfer reactions at modified lead dioxide electrodes. Office of Scientific and Technical Information (OSTI), wrzesień 1990. http://dx.doi.org/10.2172/6562056.
Pełny tekst źródłaChang, Hsiangpin. Selective electrocatalysis of anodic oxygen-transfer reactions at chemically modified, thin-film lead dioxide electrodes. Office of Scientific and Technical Information (OSTI), styczeń 1990. http://dx.doi.org/10.2172/6974822.
Pełny tekst źródła