Książki na temat „Electrode interface”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Electrode interface.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych książek naukowych na temat „Electrode interface”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.

1

Láng, Gyözö G. Laser Techniques for the Study of Electrode Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Jacek, Lipkowski, i Ross P. N, red. Structure of electrified interfaces. New York, N.Y: VCH Publishers, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

NATO, Advanced Study Institute on the Study of Surfaces and Interfaces by Electron Optical Techniques (1987 Erice Italy). Surface and interface characterization by electron optical methods. New York: Plenum Press, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Howie, A., i U. Valdrè, red. Surface and Interface Characterization by Electron Optical Methods. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-9537-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Howie, A. Surface and Interface Characterization by Electron Optical Methods. Boston, MA: Springer US, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Clausen, Charlotte. Electron microscopical characterisation of interfaces in SOFC materials. Roskilde: Risø National Laboratory, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Forwood, C. T. Electron microscopy of interfaces in metals and alloys. Bristol, England: A. Hilger, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Ghosh, Dhriti Sundar. Ultrathin Metal Transparent Electrodes for the Optoelectronics Industry. Heidelberg: Springer International Publishing, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Heinz, Bartsch, red. Elektronenmikroskopische Querschnittsabbildung von Interfaces und Heterostrukturen in Halbleitern. Berlin: Akademie-Verlag, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kiejna, A. Metal surface electron physics. Kidlington, Oxford: Elsevier Science Ltd., 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Fultz, Brent. Transmission Electron Microscopy and Diffractometry of Materials. Wyd. 4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Wolstenholme, John. Auger electron spectroscopy: Practical application to materials analysis and characterization of surfaces, interfaces, and thin films. New York: Momentum Press Engineering, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Shabat, Mohammed Musa Ramadan. Linear and nonlinear electro-magnetic waves at magnetic and non-magnetic interfaces. Salford: University of Salford, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Szroeder, Paweł. Fizyka powierzchni międzyfazowej węgli niskowymiarowych i roztworów jonowych: Physics of the interface of low dimensional carbons and ionic solutions. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Bell, L. D. Evidence of momentum conservation at a nonepitaxial metal/semiconductor interface using ballistic electron emission microscopy. [Washington, DC: National Aeronautics and Space Administration, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Bell, L. D. Evidence of momentum conservation at a nonepitaxial metal/semiconductor interface using ballistic electron emission microscopy. [Washington, DC: National Aeronautics and Space Administration, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Robert A. Welch Foundation Conference on Chemical Research (49th 2004 Houston, Tex.). Charge transfer at electrodes and biological interfaces: The Robert A. Welch Foundation 49th Conference on Chemical Research : October 24-25, 2005, the Wyndam Greenspoint Hotel, Houston, Texas. Houston, Tex: Robert A. Welch Foundation, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Walkosz, Weronika. Atomic Scale Characterization and First-Principles Studies of Si₃N₄ Interfaces. New York, NY: Springer Science+Business Media, LLC, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Rockenhäuser, Christian. Electron Microscopical Investigation of Interdiffusion and Phase Formation at Gd2O3/CeO2- and Sm2O3/CeO2-Interfaces. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-08793-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Abad, Enrique. Energy Level Alignment and Electron Transport Through Metal/Organic Contacts: From Interfaces to Molecular Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

K, Biegelsen D., Smith David J. 1948- i Tong S. Y, red. Atomic-scale imaging of surfaces and interfaces: Symposium held November 30-December 2, 1992, Boston, Massachusetts, U.S.A. Pittsburgh, Pa: Materials Research Society, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Lum, Nancy Susan. Protein adsorption of human serum albumin at solid/liquid interfaces as monitored by electron spin resonance spectroscopy. Ottawa: National Library of Canada, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

G, Compton R., i Hamnett A, red. New techniques for the study of electrodes and their reactions. Amsterdam: Elsevier, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Andriiko, Aleksandr A. Many-electron Electrochemical Processes: Reactions in Molten Salts, Room-Temperature Ionic Liquids and Ionic Solutions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

D, Romig Alton, Fowler David E, Bristowe Paul D, Materials Research Society i Symposium on Structure/Property Relationships for Metal/Metal Interfaces (1991 : Anaheim, Calif.), red. Structure/property relationships for metal/metal interfaces: Symposium held April 29-May 1, 1991, Anaheim, California, U.S.A. Pittsburgh, Pa: Materials Research Society, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Electron Transfer in Protein and Supramolecular Assemblies at Interfaces (Conference) (1996 : Kanagawa, Japan), red. Electron Transfer in Protein and Supramolecular Assemblies at Interfaces: Papers presented at the conference held in Shonan Village, Kanagawa, Japan, 17-20 March 1996. Oxford: Elsevier, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Boyette, Stacey E. Investigations of the electrode-solution interface in microheterogeneous solutions involving surfactants. 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Láng, Gyözö G., i Cesar A. Barbero. Laser Techniques for the Study of Electrode Processes. Springer, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Láng, Gyözö G., i Cesar A. Barbero. Laser Techniques for the Study of Electrode Processes. Springer, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

TENS equipment, techniques, and biophysical principles. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199673278.003.0003.

Pełny tekst źródła
Streszczenie:
The purpose of the electrical current delivered during TENS is to generate nerve impulses in peripheral nerve fibres to modulate the flow of nociceptive information and reduce pain. The characteristics of the electrical currents (i.e. stimulating parameters) and physiology at the electrode–skin interface will influence which nerve fibres are excited. Conventional TENS and acupuncture-like TENS are two techniques developed to stimulate different types of nerve fibres. The purpose of this chapter is to overview the biophysical principles of TENS and to explain how these principles have been used to inform clinical practice by covering TENS equipment and the standard TENS device, the electrical characteristics of currents produced by a standard TENS device, lead wires and electrodes, the physiology at the electrode–skin interface including nerve fibre activation by TENS, and TENS techniques used in clinical practice, including conventional TENS and acupuncture-like TENS (AL-TENS).
Style APA, Harvard, Vancouver, ISO itp.
31

Yoshitake, Michiko. Work Function and Band Alignment of Electrode Materials: The Art of Interface Potential for Electronic Devices, Solar Cells, and Batteries. Springer Japan, 2020.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Vassanelli, Stefano. Implantable neural interfaces. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0050.

Pełny tekst źródła
Streszczenie:
Establishing direct communication with the brain through physical interfaces is a fundamental strategy to investigate brain function. Starting with the patch-clamp technique in the seventies, neuroscience has moved from detailed characterization of ionic channels to the analysis of single neurons and, more recently, microcircuits in brain neuronal networks. Development of new biohybrid probes with electrodes for recording and stimulating neurons in the living animal is a natural consequence of this trend. The recent introduction of optogenetic stimulation and advanced high-resolution large-scale electrical recording approaches demonstrates this need. Brain implants for real-time neurophysiology are also opening new avenues for neuroprosthetics to restore brain function after injury or in neurological disorders. This chapter provides an overview on existing and emergent neurophysiology technologies with particular focus on those intended to interface neuronal microcircuits in vivo. Chemical, electrical, and optogenetic-based interfaces are presented, with an analysis of advantages and disadvantages of the different technical approaches.
Style APA, Harvard, Vancouver, ISO itp.
33

Valdre, Ugo. Surface and Interface Characterization by Electron Optical Methods. Springer, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Surface and Interface Characterization by Electron Optical Methods. Springer, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Prasad, Girijesh. Brain–machine interfaces. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0049.

Pełny tekst źródła
Streszczenie:
A brain–machine interface (BMI) is a biohybrid system intended as an alternative communication channel for people suffering from severe motor impairments. A BMI can involve either invasively implanted electrodes or non-invasive imaging systems. The focus in this chapter is on non-invasive approaches; EEG-based BMI is the most widely investigated. Event-related de-synchronization/ synchronization (ERD/ERS) of sensorimotor rhythms (SMRs), P300, and steady-state visual evoked potential (SSVEP) are the three main cortical activation patterns used for designing an EEG-based BMI. A BMI involves multiple stages: brain data acquisition, pre-processing, feature extraction, and feature classification, along with a device to communicate or control with or without neurofeedback. Despite extensive research worldwide, there are still several challenges to be overcome in making BMI practical for daily use. One such is to account for non-stationary brainwaves dynamics. Also, some people may initially find it difficult to establish a reliable BMI with sufficient accuracy. BMI research, however, is progressing in two broad areas: replacing neuromuscular pathways and neurorehabilitation.
Style APA, Harvard, Vancouver, ISO itp.
36

Kharton, Vladislav V. Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes. Wiley & Sons, Incorporated, John, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Kharton, Vladislav V. Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes. Wiley & Sons, Incorporated, John, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Kharton, Vladislav V. Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes. Wiley & Sons, Limited, John, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Kharton, Vladislav V. Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes. Wiley & Sons, Incorporated, John, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Proceedings of the symposium on microscopic models of electrode-electrolyte interfaces. Pennington, NJ: Electrochemical Society, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Imaging of surfaces and interfaces. New York: Wiley-VCH, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Clarebrough, L. M. Electron Microscopy of Interfaces in Metals and Alloys. CRC Press LLC, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Clarebrough, L. M. Electron Microscopy of Interfaces in Metals and Alloys. CRC Press LLC, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Clarebrough, L. M. Electron Microscopy of Interfaces in Metals and Alloys. CRC Press LLC, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Clarebrough, L. M. Electron Microscopy of Interfaces in Metals and Alloys. CRC Press LLC, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Analytical Transmission Electron Microscopy Studies on Copper-Alumina Interfaces. Storming Media, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Localized in-situ methods for investigating eletrochemical interfaces: Proceedings of the international symposium. Pennington, NJ: Electrochemical Society, 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Kiejna, A., i K. F. Wojciechowski. Metal Surface Electron Physics. Elsevier Science & Technology Books, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Wolstenholme, John. Auger Electron Spectroscopy: Practical Application to Materials Analysis and Characterization of Surfaces, Interfaces, and Thin Films. Momentum Press, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Basu, Prasanta Kumar, Bratati Mukhopadhyay i Rikmantra Basu. Semiconductor Nanophotonics. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780198784692.001.0001.

Pełny tekst źródła
Streszczenie:
Abstract Nanometre sized structures made of semiconductors, insulators and metals and grown by modern growth technologies or by chemical synthesis exhibit novel electronic and optical phenomena due to confinement of electrons and photons. Strong interactions between electrons and photons in narrow regions lead to inhibited spontaneous emission, thresholdless laser operation, and Bose Einstein condensation of exciton-polaritons in microcavities. Generation of sub-wavelength radiation by surface Plasmon-polaritons at metal-semiconductor interfaces, creation of photonic band gap in dielectrics, and realization of nanometer sized semiconductor or insulator structures with negative permittivity and permeability, known as metamaterials, are further examples in the area of nanophotonics. The studies help develop Spasers and plasmonic nanolasers of subwavelength dimensions, paving the way to use plasmonics in future data centres and high speed computers working at THz bandwidth with less than a few fJ/bit dissipation. The present book intends to serveas a textbook for graduate students and researchers intending to have introductory ideas of semiconductor nanophotonics. It gives an introduction to electron-photon interactions in quantum wells, wires and dots and then discusses the processes in microcavities, photonic band gaps and metamaterials and related applications. The phenomena and device applications under strong light-matter interactions are discussed by mostly using classical and semi-classical theories. Numerous examples and problems accompany each chapter.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii