Artykuły w czasopismach na temat „Electrode capacitive”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Electrode capacitive”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Asl, Sara Nazari, Frank Ludwig i Meinhard Schilling. "Noise properties of textile, capacitive EEG electrodes". Current Directions in Biomedical Engineering 1, nr 1 (1.09.2015): 34–37. http://dx.doi.org/10.1515/cdbme-2015-0009.
Pełny tekst źródłaWang, Li, Yun Zhou, Jie Wang i Ning Hu. "Approaching Capacitive Deionization (CDI) on Desalination of Water and Wastewater - New Progress and its Potential". Advanced Materials Research 1088 (luty 2015): 557–61. http://dx.doi.org/10.4028/www.scientific.net/amr.1088.557.
Pełny tekst źródłaWang, Zhiyu, Shun Wang, Guangyou Fang i Qunying Zhang. "Investigation on a Novel Capacitive Electrode for Geophysical Surveys". Journal of Sensors 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/4209850.
Pełny tekst źródłaSuen, Min-Sheng, i Rongshun Chen. "Capacitive Tactile Sensor with Concentric-Shape Electrodes for Three-Axial Force Measurement". Proceedings 2, nr 13 (19.12.2018): 708. http://dx.doi.org/10.3390/proceedings2130708.
Pełny tekst źródłaTamura, Saki, Justin K. M. Wyss, Mirza Saquib Sarwar, Addie Bahi, John D. W. Madden i Frank K. Ko. "Woven Structure for Flexible Capacitive Pressure Sensors". MRS Advances 5, nr 18-19 (2020): 1029–37. http://dx.doi.org/10.1557/adv.2020.136.
Pełny tekst źródłaGao, X., A. Omosebi, Z. Ma, F. Zhu, J. Landon, M. Ghorbanian, N. Kern i K. Liu. "Capacitive deionization using symmetric carbon electrode pairs". Environmental Science: Water Research & Technology 5, nr 4 (2019): 660–71. http://dx.doi.org/10.1039/c8ew00957k.
Pełny tekst źródłaLaxman, Karthik, Laila Al Gharibi i Joydeep Dutta. "Capacitive deionization with asymmetric electrodes: Electrode capacitance vs electrode surface area". Electrochimica Acta 176 (wrzesień 2015): 420–25. http://dx.doi.org/10.1016/j.electacta.2015.07.036.
Pełny tekst źródłaSavchuk, Arsen. "Development of a model of electric impedance in the contact between the skin and a capacitive active electrode when measuring electrocardiogram in combustiology". Eastern-European Journal of Enterprise Technologies 2, nr 5 (110) (30.04.2021): 32–38. http://dx.doi.org/10.15587/1729-4061.2021.228735.
Pełny tekst źródłaTang, Yue, Ronghui Chang, Limin Zhang, Feng Yan, Haowen Ma i Xiaofeng Bu. "Electrode Humidification Design for Artifact Reduction in Capacitive ECG Measurements". Sensors 20, nr 12 (18.06.2020): 3449. http://dx.doi.org/10.3390/s20123449.
Pełny tekst źródłaPark, Byoung-Nam. "Differential Analysis of Surface-Dominated vs. Bulk-Dominated Electrochemical Processes in Lithium Iron Phosphate Cathodes". Korean Journal of Metals and Materials 62, nr 8 (5.08.2024): 624–30. http://dx.doi.org/10.3365/kjmm.2024.62.8.624.
Pełny tekst źródłaPohlman, Garrett, Andrew Haddad, Bilen Akuzum, Ertan Agar i Lukas Hackl. "Finite Element Analysis of Flow-Electrode Capacitive Deionization". ECS Meeting Abstracts MA2024-01, nr 45 (9.08.2024): 2570. http://dx.doi.org/10.1149/ma2024-01452570mtgabs.
Pełny tekst źródłaZhang, Ying Jie, Jia Guo i Ting Li. "Research Progress on Binder of Activated Carbon Electrode". Advanced Materials Research 549 (lipiec 2012): 780–84. http://dx.doi.org/10.4028/www.scientific.net/amr.549.780.
Pełny tekst źródłaLessard-Tremblay, Mathieu, Joshua Weeks, Laura Morelli, Glenn Cowan, Ghyslain Gagnon i Ricardo J. Zednik. "Contactless Capacitive Electrocardiography Using Hybrid Flexible Printed Electrodes". Sensors 20, nr 18 (10.09.2020): 5156. http://dx.doi.org/10.3390/s20185156.
Pełny tekst źródłaAl Hajji Safi, Maria, D. Noel Buckley, Andrea Bourke i Robert P. Lynch. "(Invited) Relationship of Pseudo-Capacitive Current in Sulphuric Acid and Vanadium Flow Battery Reaction Kinetics at Carbon Electrodes". ECS Meeting Abstracts MA2023-02, nr 59 (22.12.2023): 2877. http://dx.doi.org/10.1149/ma2023-02592877mtgabs.
Pełny tekst źródłaVallance, R. Ryan, Eric R. Marsh i Philip T. Smith. "Effects of Spherical Targets on Capacitive Displacement Measurements". Journal of Manufacturing Science and Engineering 126, nr 4 (1.11.2004): 822–29. http://dx.doi.org/10.1115/1.1813476.
Pełny tekst źródłaZheng, Peiliang, Yan Deng, Shuxiang Wang i Dechang Wu. "Investigation on capacitive force measuring device with linear output". Journal of Physics: Conference Series 2378, nr 1 (1.12.2022): 012004. http://dx.doi.org/10.1088/1742-6596/2378/1/012004.
Pełny tekst źródłaDeguchi, M. "Expansion of detectable area by floating electrodes in capacitive three-dimensional proximity sensor". International Journal on Smart Sensing and Intelligent Systems 14, nr 1 (1.01.2021): 1–11. http://dx.doi.org/10.21307/ijssis-2021-018.
Pełny tekst źródłaChen, Chi-Chun, Shu-Yu Lin i Wen-Ying Chang. "Novel Stable Capacitive Electrocardiogram Measurement System". Sensors 21, nr 11 (25.05.2021): 3668. http://dx.doi.org/10.3390/s21113668.
Pełny tekst źródłaUllah, Hadaate, Md A. Wahab, Geoffrey Will, Mohammad R. Karim, Taisong Pan, Min Gao, Dakun Lai, Yuan Lin i Mahdi H. Miraz. "Recent Advances in Stretchable and Wearable Capacitive Electrophysiological Sensors for Long-Term Health Monitoring". Biosensors 12, nr 8 (11.08.2022): 630. http://dx.doi.org/10.3390/bios12080630.
Pełny tekst źródłaBednar, Tadeas, Branko Babusiak, Michal Labuda, Milan Smetana i Stefan Borik. "Common-Mode Voltage Reduction in Capacitive Sensing of Biosignal Using Capacitive Grounding and DRL Electrode". Sensors 21, nr 7 (6.04.2021): 2568. http://dx.doi.org/10.3390/s21072568.
Pełny tekst źródłaUchida, N., M. Moriyama, A. Kawaguchi, M. Yokokawa, S. Ikeda, H. Kitagaki i H. Kato. "An RF hyperthermia electrode which generates no edge effect". Journal of Clinical Oncology 27, nr 15_suppl (20.05.2009): e22229-e22229. http://dx.doi.org/10.1200/jco.2009.27.15_suppl.e22229.
Pełny tekst źródłaKang, Younghwan, Sangdong Choi, Chiwan Koo i Yeunho Joung. "Development and Optimization of Silicon−Dioxide−Coated Capacitive Electrode for Ambulatory ECG Measurement System". Sensors 22, nr 21 (1.11.2022): 8388. http://dx.doi.org/10.3390/s22218388.
Pełny tekst źródłaJo, Kyusik, Youngbin Baek, Changha Lee i Jeyong Yoon. "Effect of Hydrophilicity of Activated Carbon Electrodes on Desalination Performance in Membrane Capacitive Deionization". Applied Sciences 9, nr 23 (23.11.2019): 5055. http://dx.doi.org/10.3390/app9235055.
Pełny tekst źródłaCao, Cuihui, Xiaofeng Wu, Yuming Zheng, Donghai Zhang, Jianhua Chen i Yunfa Chen. "Ordered Mesoporous Carbon with Chitosan for Disinfection of Water via Capacitive Deionization". Nanomaterials 10, nr 3 (9.03.2020): 489. http://dx.doi.org/10.3390/nano10030489.
Pełny tekst źródłaPopov, Maxim V., Alexander G. Bannov i Stepan I. Yusin. "Carbon nanomaterials for supercapacitors: two electrode scheme". MATEC Web of Conferences 340 (2021): 01035. http://dx.doi.org/10.1051/matecconf/202134001035.
Pełny tekst źródłaHabib, Ahsan. "Chicken Feathers-Derived Carbon Electrodes for Capacitive Deionization". ECS Meeting Abstracts MA2023-02, nr 9 (22.12.2023): 1035. http://dx.doi.org/10.1149/ma2023-0291035mtgabs.
Pełny tekst źródłaEvtushenko, Gennadiy, Inna A. Lezhnina, Artem I. Morenetz, Boris N. Pavlenko, Arman A. Boyakhchyan, Stanislav N. Torgaev i Irina Nam. "Development of medical capacitive coupling electrodes using the skin-electrode contact control". Sensor Review 40, nr 3 (11.04.2020): 347–54. http://dx.doi.org/10.1108/sr-11-2019-0289.
Pełny tekst źródłaJiang, Shaojie, Hongwu Wang, Guanquan Xiong, Xinlei Wang i Siying Tan. "Removal of nitrate using activated carbon-based electrodes for capacitive deionization". Water Supply 18, nr 6 (1.02.2018): 2028–34. http://dx.doi.org/10.2166/ws.2018.025.
Pełny tekst źródłaLiu, Hong, Qi Wang, Wenjie Sheng, Xubo Wang, Kaidi Zhang, Lin Du i Jia Zhou. "Humidity Sensors with Shielding Electrode Under Interdigitated Electrode". Sensors 19, nr 3 (6.02.2019): 659. http://dx.doi.org/10.3390/s19030659.
Pełny tekst źródłaLinnartz, Christian J., Alexandra Rommerskirchen, Joanna Walker, Janis Plankermann-Hajduk, Niklas Köller i Matthias Wessling. "Membrane-electrode assemblies for flow-electrode capacitive deionization". Journal of Membrane Science 605 (czerwiec 2020): 118095. http://dx.doi.org/10.1016/j.memsci.2020.118095.
Pełny tekst źródłaMacDonald, Michael, i Igor Zhitomirsky. "Capacitive Properties of Ferrimagnetic NiFe2O4-Conductive Polypyrrole Nanocomposites". Journal of Composites Science 8, nr 2 (30.01.2024): 51. http://dx.doi.org/10.3390/jcs8020051.
Pełny tekst źródłaPolz, Mathias, Thomas Rath, Gregor Trimmel, Sara Stoppacher, Marta Nowakowska, Karin Kornmüller, Niroj Shestha, Christian Baumgartner i Theresa Rienmüller. "Holistic Equivalent Circuit Model for Capacitive Extracellular Stimulation". Current Directions in Biomedical Engineering 8, nr 2 (1.08.2022): 777–80. http://dx.doi.org/10.1515/cdbme-2022-1198.
Pełny tekst źródłaChang-Bin, Tang, Niu Hao, Lu Yu-Xuan, Wang Fei, Zhang Yu-Jie i Xue Juan-Qin. "Electrodeposited MnO2-based Capacitive Composite Electrodes for Pb2+ Adsorption". Revista de Chimie 71, nr 7 (4.08.2020): 284–98. http://dx.doi.org/10.37358/rc.20.7.8247.
Pełny tekst źródłaHussain, Humair, Asim Jilani, Numan Salah, Ahmed Alshahrie, Adnan Memić, Mohammad Omaish Ansari i Joydeep Dutta. "Freestanding Activated Carbon Nanocomposite Electrodes for Capacitive Deionization of Water". Polymers 14, nr 14 (16.07.2022): 2891. http://dx.doi.org/10.3390/polym14142891.
Pełny tekst źródłaDou, Chen, Shengyong Zhai, Yiyang Liu, Peng Chen, Di Yin, Guangtuan Huang i Lehua Zhang. "Chemical modification of carbon particles to enhance the electrosorption of capacitive deionization process". Journal of Water Reuse and Desalination 10, nr 1 (25.02.2020): 57–69. http://dx.doi.org/10.2166/wrd.2020.052.
Pełny tekst źródłaGolabzaei, Sabereh, Ramin Khajavi, Heydar Ali Shayanfar, Mohammad Esmail Yazdanshenas i Nemat Talebi. "Fabrication and characterization of a flexible capacitive sensor on PET fabric". International Journal of Clothing Science and Technology 30, nr 5 (3.09.2018): 687–97. http://dx.doi.org/10.1108/ijcst-08-2017-0125.
Pełny tekst źródłaLi, Wang, Lei Lei, Zhou Yun i Fu Jiangtao. "Fabrication of titanium carburizing electrodes for capacitive deionization". Water Science and Technology 76, nr 4 (20.04.2017): 754–60. http://dx.doi.org/10.2166/wst.2017.210.
Pełny tekst źródłaThangavel, Sathies, i Senthil Ponnusamy. "Application of 3D printed polymer composite as capacitive sensor". Sensor Review 40, nr 1 (29.11.2019): 54–61. http://dx.doi.org/10.1108/sr-08-2019-0198.
Pełny tekst źródłaMazumder, Prantik, Todd StClair i Roy Bourcier. "(Invited) Capacitive Deionization (CDI) – an Industrial Research Perspective". ECS Meeting Abstracts MA2023-01, nr 27 (28.08.2023): 1762. http://dx.doi.org/10.1149/ma2023-01271762mtgabs.
Pełny tekst źródłaPothanamkandathil, Vineeth, i Christopher A. Gorski. "Charge Redistribution Reactions in Intercalation Electrodes Used for Capacitive Deionization". ECS Meeting Abstracts MA2022-02, nr 27 (9.10.2022): 1050. http://dx.doi.org/10.1149/ma2022-02271050mtgabs.
Pełny tekst źródłaHo, M. Y., Poi Sim Khiew, D. Isa, T. K. Tan, W. S. Chiu i C. H. Chia. "LiFePO4 - Activated Carbon Composite Electrode as Symmetrical Electrochemical Capacitor in Mild Aqueous Electrolyte". Applied Mechanics and Materials 627 (wrzesień 2014): 3–6. http://dx.doi.org/10.4028/www.scientific.net/amm.627.3.
Pełny tekst źródłaTasnim, Rumana, Sheroz Khan, Musse Mohamud i Atika Arshad. "A QUALITATIVE ANALYSIS OF BIOMASS FLOW SENSING BEHAVIOR USING CAPACITIVE TECHNIQUE". IIUM Engineering Journal 17, nr 1 (30.04.2016): 29–40. http://dx.doi.org/10.31436/iiumej.v17i1.459.
Pełny tekst źródłaHimanshu, S. Rao, Dinah Punnoose, P. Sathishkumar, Chandu Gopi, Naresh Bandari, Ikkurthi Durga, T. Krishna i Hee-Je Kim. "Development of Novel and Ultra-High-Performance Supercapacitor Based on a Four Layered Unique Structure". Electronics 7, nr 7 (19.07.2018): 121. http://dx.doi.org/10.3390/electronics7070121.
Pełny tekst źródłaTang, Yue, Ronghui Chang, Limin Zhang i Feng Yan. "An Interference Suppression Method for Non-Contact Bioelectric Acquisition". Electronics 9, nr 2 (8.02.2020): 293. http://dx.doi.org/10.3390/electronics9020293.
Pełny tekst źródłaChoo, Ko Yeon, Chung Yul Yoo, Moon Hee Han i Dong Kook Kim. "Electrochemical analysis of slurry electrodes for flow-electrode capacitive deionization". Journal of Electroanalytical Chemistry 806 (grudzień 2017): 50–60. http://dx.doi.org/10.1016/j.jelechem.2017.10.040.
Pełny tekst źródłaLee, Jaehan, Seoni Kim, Choonsoo Kim i Jeyong Yoon. "Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques". Energy Environ. Sci. 7, nr 11 (2014): 3683–89. http://dx.doi.org/10.1039/c4ee02378a.
Pełny tekst źródłaYamamoto, Kentaro, Yoshifumi Nishida, Ken Sasaki, Dairoku Muramatsu i Fukuro Koshiji. "Electromagnetic Field Analysis of Signal Transmission Path and Electrode Contact Conditions in Human Body Communication". Applied Sciences 8, nr 9 (3.09.2018): 1539. http://dx.doi.org/10.3390/app8091539.
Pełny tekst źródłaLiu, Yong, Yue Zhang, Yuchen Zhang, Qing Zhang, Xin Gao, Xinyue Dou, Haiguang Zhu, Xun Yuan i Likun Pan. "MoC nanoparticle-embedded carbon nanofiber aerogels as flow-through electrodes for highly efficient pseudocapacitive deionization". Journal of Materials Chemistry A 8, nr 3 (2020): 1443–50. http://dx.doi.org/10.1039/c9ta11537d.
Pełny tekst źródłaLi, Zhen, Guoming Chen, Yue Gu, Kefan Wang, Wei Li i Xiaokang Yin. "Further Investigations into the Capacitive Imaging Technique Using a Multi-Electrode Sensor". Applied Sciences 8, nr 11 (19.11.2018): 2296. http://dx.doi.org/10.3390/app8112296.
Pełny tekst źródłaHUANG, WEI, YIMIN ZHANG, SHENXU BAO i SHAOXIAN SONG. "DESALINATION BY CAPACITIVE DEIONIZATION WITH CARBON-BASED MATERIALS AS ELECTRODE: A REVIEW". Surface Review and Letters 20, nr 06 (grudzień 2013): 1330003. http://dx.doi.org/10.1142/s0218625x13300050.
Pełny tekst źródła