Gotowa bibliografia na temat „Electrochemical device systems”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Electrochemical device systems”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Electrochemical device systems"
Menon, Ankitha, Abdullah Khan, Neethu T. M. Balakrishnan, Prasanth Raghavan, Carlos A. Leon y Leon, Haris Ali Khan, M. J. Jabeen Fatima i Peter Samora Owuor. "Advances in 3D Printing for Electrochemical Energy Storage Systems". Journal of Material Science and Technology Research 8 (30.11.2021): 50–69. http://dx.doi.org/10.31875/2410-4701.2021.08.7.
Pełny tekst źródłaLi, Shuang, Ziyue Qin, Jie Fu i Qiya Gao. "Nanobiosensing Based on Electro-Optically Modulated Technology". Nanomaterials 13, nr 17 (23.08.2023): 2400. http://dx.doi.org/10.3390/nano13172400.
Pełny tekst źródłaTsai, Han-Kuan A., i Marc Madou. "Microfabrication of Bilayer Polymer Actuator Valves for Controlled Drug Delivery". JALA: Journal of the Association for Laboratory Automation 12, nr 5 (październik 2007): 291–95. http://dx.doi.org/10.1016/j.jala.2007.06.010.
Pełny tekst źródłaVizza, Martina, Giulio Pappaianni, Walter Giurlani, Andrea Stefani, Roberto Giovanardi, Massimo Innocenti i Claudio Fontanesi. "Electrodeposition of Cu on PEDOT for a Hybrid Solid-State Electronic Device". Surfaces 4, nr 2 (24.05.2021): 157–68. http://dx.doi.org/10.3390/surfaces4020015.
Pełny tekst źródłaPlaksin, S. V., А. М. Мukhа, D. V. Ustymenko, М. Y. Zhytnyk, R. Y. Levchenko, Y. М. Chupryna i О. O. Holota. "Method of Operational Control and Management of Electrochemical Energy Storage Device in the Systems of Electricity Supply of Vehicles". Science and Transport Progress, nr 6(96) (20.12.2021): 39–52. http://dx.doi.org/10.15802/stp2021/258172.
Pełny tekst źródłaKomal, Baby, Madhavi Yadav, Manindra Kumar, Tuhina Tiwari i Neelam Srivastava. "Modifying potato starch by glutaraldehyde and MgCl2 for developing an economical and environment-friendly electrolyte system". e-Polymers 19, nr 1 (16.07.2019): 453–61. http://dx.doi.org/10.1515/epoly-2019-0047.
Pełny tekst źródłaWang, Shijie, Xi Chen, Chao Zhao, Yuxin Kong, Baojun Lin, Yongyi Wu, Zhaozhao Bi i in. "An organic electrochemical transistor for multi-modal sensing, memory and processing". Nature Electronics 6, nr 4 (27.04.2023): 281–91. http://dx.doi.org/10.1038/s41928-023-00950-y.
Pełny tekst źródłaPansodtee, Pattawong, John Selberg, Manping Jia, Mohammad Jafari, Harika Dechiraju, Thomas Thomsen, Marcella Gomez, Marco Rolandi i Mircea Teodorescu. "The multi-channel potentiostat: Development and evaluation of a scalable mini-potentiostat array for investigating electrochemical reaction mechanisms". PLOS ONE 16, nr 9 (16.09.2021): e0257167. http://dx.doi.org/10.1371/journal.pone.0257167.
Pełny tekst źródłaXue, Wuhong, Xiao-Hong Xu i Gang Liu. "Solid-State Electrochemical Process and Performance Optimization of Memristive Materials and Devices". Chemistry 1, nr 1 (21.03.2019): 44–68. http://dx.doi.org/10.3390/chemistry1010005.
Pełny tekst źródłaSreenivasan, Sreeprasad T. "Magnetism to Engineer Electrocatalyst and Device Performances". ECS Meeting Abstracts MA2022-02, nr 46 (9.10.2022): 1720. http://dx.doi.org/10.1149/ma2022-02461720mtgabs.
Pełny tekst źródłaRozprawy doktorskie na temat "Electrochemical device systems"
Kawahara, Jun. "Novel architectures for flexible electrochemical devices and systems". Doctoral thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-91273.
Pełny tekst źródłaGrove, Fraser Traves Smith. "Impedance Sensing of N2A and Astrocytes as Grounds for a Central Nervous System Cancer Diagnostic Device". DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/782.
Pełny tekst źródłaVasudev, Abhay. "Electrochemical Immunosensing of Cortisol in an Automated Microfluidic System Towards Point-of-Care Applications". FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/956.
Pełny tekst źródłaLinzen, Dirk [Verfasser]. "Impedance-Based Loss Calculation and Thermal Modeling of Electrochemical Energy Storage Devices for Design Considerations of Automotive Power Systems / Dirk Linzen". Aachen : Shaker, 2006. http://d-nb.info/1166515028/34.
Pełny tekst źródłaÖberg, Månsson Ingrid. "Electroanalytical devices with fluidic control using textile materials and methods". Licentiate thesis, KTH, Fiberteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279327.
Pełny tekst źródłaDenna avhandling, skriven av Ingrid Öberg Månsson vid Kungliga Tekniska Högskolan och titulerad ”Elektroanalytiska sensorer med vätskekontroll integrerad genom användande av textila material och metoder”, presenterar experimentella studier inom utvecklingen av textilbaserade elektroniska komponenter och biosensorer. Detta är av intresse på grund av den ökade efterfrågan på integrerade smarta produkter som till exempel bärbara sensorer för hälsoövervakning eller för att samla upp och konvertera energi till elektricitet. För att möjliggöra denna typ av produkter föds nya interdisciplinära fält där traditionell textilteknologi och elektronik möts. Textilbaserade enheter har väckt stort intresse under de senaste åren på grund av den naturliga förmågan att integrera funktion i till exempel kläder eller förband genom textila tillverkningsprocesser som väveri, stickning eller sömnad. Många modifikationer hos garner som krävs för att möjliggöra sådana tillämpningar är dock inte tillgängliga i större skala. Därför har det huvudsakliga syftet med denna studie varit att undersöka hur man kan uppnå den prestanda som krävs för att tillverka elektroniska textila komponenter, antingen genom att belägga garner med elektroniskt ledande material eller genom att använda kommersiellt tillgängliga ledande garner som sedan modifieras kemiskt för att skapa sensorer. Utöver detta har vätsketransport inom textila material studerats för att kunna styra och kontrollera kontaktytan mellan elektrolyt och elektroder i elektrokemiska enheter så som sensorer och transistorer. Garner med speciella tvärsnitt, som traditionellt använts i sportkläder för att transportera svett bort från kroppen och underlätta avdunstning, har använts för att transportera elektrolytvätska till elektroder av garn. Den definierade kontaktytan där det vätsketransporterade garnet korsar elektrodgarnet har visats öka stabiliteten av mätningen och reproducerbarheten mellan mätenheter. Resultaten som presenteras i de två artiklar som denna avhandling bygger på samt i avhandlingen själv visar på lovande potential för användandet av textila material för att integrera elektronisk och elektrokemisk funktionalitet i våra vardagsliv. Detta har uppnåtts genom att använda grundläggande textila material och tillverkningsprocesser för att tillverka komplexa enheter för olika tillämpningsområden så som sensorer för diagnostik samt elektroniska komponenter.
QC 2020-08-21
Baccour, Mohamed. "Monolithes à porosité multi-échelle comme supports pour la réduction enzymatique du CO2 en molécules d'intérêts". Thesis, Montpellier, Ecole nationale supérieure de chimie, 2018. http://www.theses.fr/2018ENCM0004.
Pełny tekst źródłaCarbon dioxide (CO2) is a greenhouse gas that results, in part, from human activities and causes global warming and climate change. According to the International Energy Agency, global CO2 emissions from fossil-fuel combustion reached a record high of 31.3 gigatonnes in 2011. The concept of the methanol economy, advocated by Nobel laureate Prof. George A. Olah back in the 1990s, hinges on the chemical recycling of CO2 to methanol and derived, suggesting methanol as a key substitute fuel and starting material for valuable chemicals. The recycling conversion of CO2 could be a rational way to develop an anthropogenic short-term carbon cycle. With this aim, The design of functional porous architectures depicting hierarchical and interconnected pore networks has emerged as a challenging field of research. Particularly, porous monoliths offer many advantages and can be employed as flow-through reactors for separation, catalysis and biocatalysis. This study focuses on the design of monoliths with hierarchical porosity and high surface area. Firstly, silica monoliths with both homogeneous macro- and mesopores were prepared using sol-gel chemistry and spinodal decomposition using PEO polymers. Macropore (up to 30 microns) and mesopore (up to 20 nm) diameters of the monoliths were controlled by modifying various experimental parameters (PEO molecular weight, addition of surfactants, different basic post-treatments, different temperatures, etc.). Secondly, carbonaceous replica have been prepared through hydrothermal carbonization of sucrose, subsequent pyrolysis and silica etching. These materials present large interconnected flow-trough macropores, a bimodal mesoporosity, a high surface area (up to 1400 m2 g-1) and high meso- and macropore volumes.Different enzymes were immobilized onto the monoliths amongst which formate dehydrogenases. Flow-through reactors were engineered and continuous flow biocatalysis was performed. In such systems, straightforward processes for the in situ regeneration of the enzyme cofactor, i.e. 1,4-NADH wrer developped. Flow-through reactors and their use for the enzymatic reduction of carbon dioxide into formate were designed
Gassull, Daniel [Verfasser]. "Electrochemical sensing of surface reactions on Gallium Arsenide based semiconductor devices functionalized with bio-organic molecular systems / Daniel Gassull". 2007. http://d-nb.info/986097047/34.
Pełny tekst źródła(9189602), Tran NH Nguyen. "Printable Electrochemical Biosensors for the Detection of Neurotransmitter and Other Biological Molecule". Thesis, 2020.
Znajdź pełny tekst źródłaSen, Sudeshna. "A Few Case Studies of Polymer Conductors for Lithium-based Batteries". Thesis, 2016. http://hdl.handle.net/2005/3019.
Pełny tekst źródłaKsiążki na temat "Electrochemical device systems"
Sarkar, B. K., i Reena Singh. Hydrogen Fuel Cell Vehicles Current Status. Namya Press, 2022. http://dx.doi.org/10.56962/9789355451118.
Pełny tekst źródłaNarlikar, A. V., red. The Oxford Handbook of Small Superconductors. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.001.0001.
Pełny tekst źródłaCahay, M. Proceedings of the Fourth International Symposium on Quantum Confinement: Nanoscale Materials, Devices, and Systems (Proceedings / Electrochemical Society). Electrochemical Society, 1997.
Znajdź pełny tekst źródłaCzęści książek na temat "Electrochemical device systems"
Gruszecki, Wiesław I. "Plant Photosystem II as an Example of a Natural Photovoltaic Device". W Electrochemical Processes in Biological Systems, 121–31. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118899076.ch6.
Pełny tekst źródłaJyothis, Surendran, Ravindran Sujith i Sanket Goel. "Phosphorene-Based Electrochemical Systems". W Miniaturized Electrochemical Devices, 121–37. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/b23359-8.
Pełny tekst źródłaTel-Vered, Ran, Bilha Willner i Itamar Willner. "Biohybrid Electrochemical Devices". W Electrochemistry of Functional Supramolecular Systems, 333–76. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470583463.ch12.
Pełny tekst źródłaMiserere, Sandrine, i Arben Merkoçi. "Microfluidic Electrochemical Biosensors: Fabrication and Applications". W Lab-on-a-Chip Devices and Micro-Total Analysis Systems, 141–60. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08687-3_6.
Pełny tekst źródłaArya, Anil, i A. L. Sharma. "Hybrid Polymer Nanocomposites for Energy Storage/Conversion Devices: From Synthesis to Applications". W Electrochemical Energy Conversion and Storage Systems for Future Sustainability, 93–126. Includes bibliographical references and index.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9781003009320-3.
Pełny tekst źródłaBattistoni, Silvia. "Organic Memristive Devices and Organic Electrochemical Transistors as Promising Elements for Bio-inspired Systems". W Memristor Computing Systems, 273–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90582-8_12.
Pełny tekst źródłaTsujii, Yoshinobu, Yohei Nakanishi, Ryohei Ishige, Kohji Ohno, Takashi Morinaga i Takaya Sato. "Development of Novel Nano-systems for Electrochemical Devices by Hierarchizing Concentrated Polymer Brushes". W Intelligent Nanosystems for Energy, Information and Biological Technologies, 195–215. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56429-4_11.
Pełny tekst źródłaRöpke, Wilfried, Alan O’Neill, Oliver Rötting, John Murrihy, Mila Pravda i Holger Becker. "Manufacturing Issues of Polymer Microfluidic Devices with Integrated Electrodes for Electrochemical Detection of Heavy Metals in Environmental Samples". W Micro Total Analysis Systems 2001, 183–84. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-1015-3_79.
Pełny tekst źródła"Nanomaterial-Based Electrochemical Biosensors". W Nanomedical Device and Systems Design, 348–64. CRC Press, 2016. http://dx.doi.org/10.1201/b15626-18.
Pełny tekst źródłaVan Toan, Nguyen, Truong Thi Kim Tuoi, Nguyen Huu Trung, Khairul Fadzli Samat, Nguyen Van Hieu i Takahito Ono. "Micro-Thermoelectric Generators: Material Synthesis, Device Fabrication, and Application Demonstration". W Energy Recovery [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102649.
Pełny tekst źródłaStreszczenia konferencji na temat "Electrochemical device systems"
Po-Ying Li, Jason Shih, Ronalee Lo, Bonnie Adams, Rajat Agrawa, Saloomeh Saati, Mark S. Humayun, Yu-Chong Tai i Ellis Meng. "An electrochemical intraocular drug delivery device". W 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2007. http://dx.doi.org/10.1109/memsys.2007.4433047.
Pełny tekst źródłaLuo, Tao, Luyang Li, Vishal Ghorband, Yuanda Zhan, Hongjiang Song i Jennifer Blain Christen. "A portable impedance-based electrochemical measurement device". W 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2016. http://dx.doi.org/10.1109/iscas.2016.7539197.
Pełny tekst źródłaGurule, Anthony P. "Thermal Modeling of a Thermally Regenerative Electrochemical Device: AMTEC". W International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1994. http://dx.doi.org/10.4271/941435.
Pełny tekst źródłaChakraborty, Isha, Ravi Akalkotkar, Dan Krueger, Tristram Coffin, Mochen Hu, Xiangyi Chen, Xingjian Gan, Swati Bhat, Linran Zhao i Yaoyao Jia. "A Wireless Trimodal Neural Interface Device with Electrical and Electrochemical Recording". W 2023 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS). IEEE, 2023. http://dx.doi.org/10.1109/wmcs58822.2023.10194259.
Pełny tekst źródłaWei, Yi-Chi, Shin-Yu Su, Lung-Min Fu i Che-Hsin Lin. "Electrophoresis separation and electrochemical detection on a novel line-based microfluidic device". W 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2012. http://dx.doi.org/10.1109/memsys.2012.6170104.
Pełny tekst źródłaPark, Ho Seok, Jong Kyun You, Bong Gill Choi, Won Hi Hong i Ki-Pung Yoo. "1D and 3D Shaped Ionic Liquid/Aluminum Hydroxide Nanohybrids for Electrochemical Device". W 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2007. http://dx.doi.org/10.1109/nems.2007.352227.
Pełny tekst źródłaIdris, Razali, Anis Tasnim, Mas Rosemal Hakim, Dahlan Hj Mohd, Zulkafli Ghazali, Kamisah Mohamad Mahbor, L. T. Handoko i Masbah R. T. Siregar. "Epoxidised Natural Rubber Based Composite Polymer Electrolyte Systems For Use In Electrochemical Device Applications". W INTERNATIONAL WORKSHOP ON ADVANCED MATERIAL FOR NEW AND RENEWABLE ENERGY. AIP, 2009. http://dx.doi.org/10.1063/1.3243251.
Pełny tekst źródłaZhang, Xingguo, Zhihua Pu, Xiaochen Lai, Haixia Yu i Dachao Li. "Flexible electrochemical film power supply with disposable glucose-based energy patch as a reconfigurable epidermal energy device". W 2018 IEEE Micro Electro Mechanical Systems (MEMS). IEEE, 2018. http://dx.doi.org/10.1109/memsys.2018.8346638.
Pełny tekst źródłaSundaresan, Vishnu Baba, Ryan L. Harne, Travis Hery i Quanqi Dai. "A Nonlinear, Monolithic Structural-Material System for Vibration Energy Harvesting and Storage". W ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9304.
Pełny tekst źródłaShivakumar, Nair Siddharth, Manish Arora i Monto Mani. "A Proposed Design of an Universal Electrochemical Reader Based on a Collated Medical Device Innovation Framework and Systems Thinking". W 2018 Fourth International Conference on Biosignals, Images and Instrumentation (ICBSII). IEEE, 2018. http://dx.doi.org/10.1109/icbsii.2018.8524721.
Pełny tekst źródłaRaporty organizacyjne na temat "Electrochemical device systems"
Delwiche, Michael, Boaz Zion, Robert BonDurant, Judith Rishpon, Ephraim Maltz i Miriam Rosenberg. Biosensors for On-Line Measurement of Reproductive Hormones and Milk Proteins to Improve Dairy Herd Management. United States Department of Agriculture, luty 2001. http://dx.doi.org/10.32747/2001.7573998.bard.
Pełny tekst źródła