Artykuły w czasopismach na temat „Electro-Catalyst”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Electro-Catalyst”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Honorato, Ana Maria Borges, Mohmmad Khalid, Antonio Aprigio da Silva Curvelo, Hamilton Varela i Samaneh Shahgaldi. "Trimetallic Nanoalloy of NiFeCo Embedded in Phosphidated Nitrogen Doped Carbon Catalyst for Efficient Electro-Oxidation of Kraft Lignin". Polymers 14, nr 18 (9.09.2022): 3781. http://dx.doi.org/10.3390/polym14183781.
Pełny tekst źródłaLindgren, Mikaela, i Itai Panas. "Confinement dependence of electro-catalysts for hydrogen evolution from water splitting". Beilstein Journal of Nanotechnology 5 (24.02.2014): 195–201. http://dx.doi.org/10.3762/bjnano.5.21.
Pełny tekst źródłaBounab, Loubna, Olalla Iglesias, Elisa González-Romero, Marta Pazos i M. Ángeles Sanromán. "Effective heterogeneous electro-Fenton process of m-cresol with iron loaded actived carbon". RSC Advances 5, nr 39 (2015): 31049–56. http://dx.doi.org/10.1039/c5ra03050a.
Pełny tekst źródłaBaronia, Richa, Jyoti Goel i Sunil Kumar Singhal. "Synthesis and Characterization of PtCo Alloy Nanoparticles Supported on a Reduced Graphene Oxide/g-C3N4 Composite for Efficient Methanol Electro-Oxidation". Journal of Nanoscience and Nanotechnology 21, nr 3 (1.03.2021): 1721–27. http://dx.doi.org/10.1166/jnn.2021.18992.
Pełny tekst źródłaNouralishahi, Amideddin, Ali Morad Rashidi, Yadollah Mortazavi, Abbas Ali Khodadadi i Mohammadmehdi Choolaei. "Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst". Applied Surface Science 335 (kwiecień 2015): 55–64. http://dx.doi.org/10.1016/j.apsusc.2015.02.011.
Pełny tekst źródłaZhou, Yang, Chen Li, Junxiang Fu, Changlin Yu i Xian-Chao Hu. "Nitrogen-doped graphene/tungsten oxide microspheres as an electro-catalyst support for formic acid electro-oxidation". RSC Advances 6, nr 95 (2016): 92852–56. http://dx.doi.org/10.1039/c6ra17344f.
Pełny tekst źródłaFernández de Dios, Maria Ángeles, Olaia Iglesias, Marta Pazos i Maria Ángeles Sanromán. "Application of Electro-Fenton Technology to Remediation of Polluted Effluents by Self-Sustaining Process". Scientific World Journal 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/801870.
Pełny tekst źródłaWang, Guang Ying, Li Fang, Fei Fei Li i Surin Saipanya. "Methanol Electro-Oxidation Using RuRh@Pt/C". Advanced Materials Research 953-954 (czerwiec 2014): 1297–302. http://dx.doi.org/10.4028/www.scientific.net/amr.953-954.1297.
Pełny tekst źródłaAbdellaoui, Sofiene, David P. Hickey, Andrew R. Stephens i Shelley D. Minteer. "Recombinant oxalate decarboxylase: enhancement of a hybrid catalytic cascade for the complete electro-oxidation of glycerol". Chemical Communications 51, nr 76 (2015): 14330–33. http://dx.doi.org/10.1039/c5cc06131h.
Pełny tekst źródłaKumar, Ratanesh, Pratap Baburao Wagh, Sanjay Vishwasrao Ingale i K. D. Joshi. "Degradation of Mononitrotoluene by Electrochemical Method". Defence Science Journal 71, nr 4 (1.07.2021): 456–61. http://dx.doi.org/10.14429/dsj.71.16376.
Pełny tekst źródłaHenry Setiyanto, Henry Setiyanto, Feni Mustika Sari Feni Mustika Sari, Muhammad Yudhistira Azis Muhammad Yudhistira Azis, Ria Sri Rahayu Ria Sri Rahayu, Amminudin Sulaeman, Muhammad Ali Zulfikar, Diah Ratnaningrum i Vienna Saraswaty. "Electrochemical Degradation of Methylene Blue using Ce(IV) Ionic Mediator in the Presence of Ag(I) Ion Catalyst for Environmental Remediation". Sains Malaysiana 51, nr 1 (31.01.2022): 149–59. http://dx.doi.org/10.17576/jsm-2022-5101-12.
Pełny tekst źródłaZhou, Yang, Xian-Chao Hu, Qizhe Fan i He-Rui Wen. "Three-dimensional crumpled graphene as an electro-catalyst support for formic acid electro-oxidation". Journal of Materials Chemistry A 4, nr 12 (2016): 4587–91. http://dx.doi.org/10.1039/c5ta09956k.
Pełny tekst źródłaBurnat, Dariusz, Roman Kontic, Lorenz Holzer, Patrick Steiger, Davide Ferri i Andre Heel. "Smart material concept: reversible microstructural self-regeneration for catalytic applications". Journal of Materials Chemistry A 4, nr 30 (2016): 11939–48. http://dx.doi.org/10.1039/c6ta03417a.
Pełny tekst źródłaLeng, Su, Rui Yang Chen, Song Yue Chen i Miao Liu. "The Study on the Treatment of Nitrobenzene Wastewater by Heterogenious Catalysts and Electrode Oxidation". Advanced Materials Research 668 (marzec 2013): 140–44. http://dx.doi.org/10.4028/www.scientific.net/amr.668.140.
Pełny tekst źródłaPaßens, M., V. Caciuc, N. Atodiresei, M. Moors, S. Blügel, R. Waser i S. Karthäuser. "Tuning the surface electronic structure of a Pt3Ti(111) electro catalyst". Nanoscale 8, nr 29 (2016): 13924–33. http://dx.doi.org/10.1039/c5nr08420b.
Pełny tekst źródłaJeon, Min Ku, Hideo Daimon, Ki Rak Lee, Akemi Nakahara i Seong Ihl Woo. "CO tolerant Pt/WC methanol electro-oxidation catalyst". Electrochemistry Communications 9, nr 11 (listopad 2007): 2692–95. http://dx.doi.org/10.1016/j.elecom.2007.09.001.
Pełny tekst źródłaMa, Kun, Hui Wang, Palanisamy Kannan i Palaniappan Subramanian. "Ni2P Nanoparticle-Inserted Porous Layered NiO Hetero-Structured Nanosheets as a Durable Catalyst for the Electro-Oxidation of Urea". Nanomaterials 12, nr 20 (17.10.2022): 3633. http://dx.doi.org/10.3390/nano12203633.
Pełny tekst źródłaJiang, Wen-Xing, Wei-Xia Liu, Chun-Li Wang, Shu-Zhong Zhan i Song-Ping Wu. "A bis(thiosemicarbazonato)-copper complex, a new catalyst for electro- and photo-reduction of CO2 to methanol". New Journal of Chemistry 44, nr 7 (2020): 2721–26. http://dx.doi.org/10.1039/c9nj05672f.
Pełny tekst źródłaGuo, Jin-Han, Xuming Wei i Wei-Yin Sun. "A MOF-74(Ni) derived partially oxidized Ni@C catalyst for SO2 electro-oxidation integrated with solar driven hydrogen evolution". Sustainable Energy & Fuels 5, nr 14 (2021): 3588–92. http://dx.doi.org/10.1039/d1se00645b.
Pełny tekst źródłaPan, Chun Xu, Jian Chun Chen, Xiao Zhu Li i Yue Li Liu. "Controlled Growth of 1-D Nanomaterials Base on Electro-Deposited Nanocrystalline Films: A Overview". Materials Science Forum 654-656 (czerwiec 2010): 1126–29. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.1126.
Pełny tekst źródłaHuang, Xin, Jinliang Song, Manli Hua, Bingfeng Chen, Zhenbing Xie, Huizhen Liu, Zhanrong Zhang, Qinglei Meng i Buxing Han. "Robust selenium-doped carbon nitride nanotubes for selective electrocatalytic oxidation of furan compounds to maleic acid". Chemical Science 12, nr 18 (2021): 6342–49. http://dx.doi.org/10.1039/d1sc01231b.
Pełny tekst źródłaWang, Honglei, Chong Li, Jintao An, Yuan Zhuang i Shengyang Tao. "Surface reconstruction of NiCoP for enhanced biomass upgrading". Journal of Materials Chemistry A 9, nr 34 (2021): 18421–30. http://dx.doi.org/10.1039/d1ta05425b.
Pełny tekst źródłaHuang, Yazhou, Jiacai Huang, Kunshan Xu i Ranran Geng. "Constructing NiSe2@MoS2 nano-heterostructures on a carbon fiber paper for electrocatalytic oxygen evolution". RSC Advances 11, nr 43 (2021): 26928–36. http://dx.doi.org/10.1039/d1ra05509g.
Pełny tekst źródłaGraf, Matthias, Mareike Haensch, Jörg Carstens, Gunther Wittstock i Jörg Weissmüller. "Electrocatalytic methanol oxidation with nanoporous gold: microstructure and selectivity". Nanoscale 9, nr 45 (2017): 17839–48. http://dx.doi.org/10.1039/c7nr05124g.
Pełny tekst źródłaMartín-Yerga, Daniel, Xiaowen Yu, Irina Terekhina, Gunnar Henriksson i Ann Cornell. "In situ catalyst reactivation for enhancing alcohol electro-oxidation and coupled hydrogen generation". Chemical Communications 56, nr 28 (2020): 4011–14. http://dx.doi.org/10.1039/d0cc01321h.
Pełny tekst źródłaLuo, Geng-Geng, Yong-Heng Wang, Jiang-Hai Wang, Ji-Huai Wu i Rui-Bo Wu. "A square-planar nickel dithiolate complex as an efficient molecular catalyst for the electro- and photoreduction of protons". Chemical Communications 53, nr 52 (2017): 7007–10. http://dx.doi.org/10.1039/c7cc01942d.
Pełny tekst źródłaAl-Qodami, Bilquis Ali, Hafsa H. Alalawy, Sayed Youssef Sayed, Islam M. Al-Akraa, Nageh K. Allam i Ahmad M. Mohammad. "Tailor-designed nanowire-structured iron and nickel oxides on platinum catalyst for formic acid electro-oxidation". RSC Advances 12, nr 31 (2022): 20395–402. http://dx.doi.org/10.1039/d2ra03386k.
Pełny tekst źródłaYıldız, Yunus, Handan Pamuk, Özlem Karatepe, Zeynep Dasdelen i Fatih Sen. "Carbon black hybrid material furnished monodisperse platinum nanoparticles as highly efficient and reusable electrocatalysts for formic acid electro-oxidation". RSC Advances 6, nr 39 (2016): 32858–62. http://dx.doi.org/10.1039/c6ra00232c.
Pełny tekst źródłaRezgui, Soumaya, Aida M. Díez, Lotfi Monser, Nafaa Adhoum, Marta Pazos i M. Ángeles Sanromán. "Magnetic TiO2/Fe3O4-Chitosan Beads: A Highly Efficient and Reusable Catalyst for Photo-Electro-Fenton Process". Catalysts 12, nr 11 (13.11.2022): 1425. http://dx.doi.org/10.3390/catal12111425.
Pełny tekst źródłaChen, Yun, Hong Chen i Haining Tian. "Immobilization of a cobalt catalyst on fullerene in molecular devices for water reduction". Chemical Communications 51, nr 57 (2015): 11508–11. http://dx.doi.org/10.1039/c5cc03856a.
Pełny tekst źródłaJeon, Min Ku, Ki Rak Lee, Won Su Lee, Hideo Daimon, Akemi Nakahara i Seong Ihl Woo. "Investigation of Pt/WC/C catalyst for methanol electro-oxidation and oxygen electro-reduction". Journal of Power Sources 185, nr 2 (grudzień 2008): 927–31. http://dx.doi.org/10.1016/j.jpowsour.2008.07.067.
Pełny tekst źródłaSevaljevic, Mirjana Miladin, Ioana Ionel, Milan Pavlovic i Ion Vetres. "Thermo-Electro Chemical Surface Energy Conversion Influence on Air Pollution". JOURNAL OF ADVANCES IN BIOTECHNOLOGY 3, nr 3 (30.12.2013): 219–28. http://dx.doi.org/10.24297/jbt.v3i3.5021.
Pełny tekst źródłaDolui, Dependu, Shikha Khandelwal, Piyali Majumder i Arnab Dutta. "The odyssey of cobaloximes for catalytic H2 production and their recent revival with enzyme-inspired design". Chemical Communications 56, nr 59 (2020): 8166–81. http://dx.doi.org/10.1039/d0cc03103h.
Pełny tekst źródłaYue, Lin, Qi Shan Wang, Jing Liang Yang, Xiao Luo, Jian Bo Guo, Jing Lian i Kai Hong Wang. "Degradation of Landfill Leachate by Electro-Heterogeneous Catalytic Reactor". Advanced Materials Research 518-523 (maj 2012): 3302–9. http://dx.doi.org/10.4028/www.scientific.net/amr.518-523.3302.
Pełny tekst źródłaWang, Jiaojiao, Xiaoqing Jia, Denghui Shang, Liangbo Xie, Yi Li, He Zhang, Sihui Zhan i Wenping Hu. "Constructing Cu2O/Bi2MoO6 p–n heterojunction towards boosted photo-assisted-electro-Fenton-like synergy degradation of ciprofloxacin". Environmental Science: Nano 8, nr 12 (2021): 3629–42. http://dx.doi.org/10.1039/d1en00894c.
Pełny tekst źródłaWang, Haining, Shanfu Lu, Yiwen Zhang, Fei Lan, Xin Lu i Yan Xiang. "Pristine graphene dispersion in solvents and its application as a catalyst support: a combined theoretical and experimental study". Journal of Materials Chemistry A 3, nr 12 (2015): 6282–85. http://dx.doi.org/10.1039/c5ta00359h.
Pełny tekst źródłaYang, Heng-Pan, Sen Qin, Ying-Na Yue, Li Liu, Huan Wang i Jia-Xing Lu. "Entrapment of a pyridine derivative within a copper–palladium alloy: a bifunctional catalyst for electrochemical reduction of CO2 to alcohols with excellent selectivity and reusability". Catalysis Science & Technology 6, nr 17 (2016): 6490–94. http://dx.doi.org/10.1039/c6cy00971a.
Pełny tekst źródłaSultan, Sundas, Afzal Shah, Naveeda Firdous, Jan Nisar, Muhammad Naeem Ashiq i Iltaf Shah. "A Novel Electrochemical Sensing Platform for the Detection of the Antidepressant Drug, Venlafaxine, in Water and Biological Specimens". Chemosensors 10, nr 10 (4.10.2022): 400. http://dx.doi.org/10.3390/chemosensors10100400.
Pełny tekst źródłaPrevidello, B. A. F., P. S. Fernández, G. Tremiliosi-Filho i H. Varela. "Probing the surface fine structure through electrochemical oscillations". Physical Chemistry Chemical Physics 20, nr 8 (2018): 5674–82. http://dx.doi.org/10.1039/c7cp08028j.
Pełny tekst źródłaSun, Jiuxiao, Xingying Luo, Weiwei Cai, Jing Li, Zhao Liu, Jie Xiong i Zehui Yang. "Ionic-exchange immobilization of ultra-low loading palladium on a rGO electro-catalyst for high activity formic acid oxidation". RSC Advances 8, nr 33 (2018): 18619–25. http://dx.doi.org/10.1039/c8ra03043j.
Pełny tekst źródłaArshid M Ali, Arshid M. Ali, Aqeel Taimoor Aqeel Taimoor, Ayyaz Muhammad Ayyaz Muhammad i Muhammad A. Daous and Usman Saeed Muhammad A Daous and Usman Saeed. "Electrocatalytic Hydrogenation of CO2 to Hydrocarbons on Gold Catalyst in the Presence of Ionic Liquid". Journal of the chemical society of pakistan 43, nr 6 (2021): 665. http://dx.doi.org/10.52568/000966/jcsp/43.06.2021.
Pełny tekst źródłaKwak, Da-Hee, Young-Woo Lee, Sang-Beom Han, Eui-Tak Hwang, Han-Chul Park, Min-Cheol Kim i Kyung-Won Park. "Ultrasmall PtSn alloy catalyst for ethanol electro-oxidation reaction". Journal of Power Sources 275 (luty 2015): 557–62. http://dx.doi.org/10.1016/j.jpowsour.2014.11.050.
Pełny tekst źródłaJu, Jianfeng, Yujun Shi i Donghui Wu. "TiO2 nanotube supported PdNi catalyst for methanol electro-oxidation". Powder Technology 230 (listopad 2012): 252–56. http://dx.doi.org/10.1016/j.powtec.2012.06.046.
Pełny tekst źródłaJeon, Min Ku, Jung Yeon Won, Ki Rak Lee i Seong Ihl Woo. "Highly active PtRuFe/C catalyst for methanol electro-oxidation". Electrochemistry Communications 9, nr 9 (wrzesień 2007): 2163–66. http://dx.doi.org/10.1016/j.elecom.2007.06.014.
Pełny tekst źródłaMeijide, Jessica, Marta Pazos i Maria Ángeles Sanromán. "Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation". Environmental Science and Pollution Research 26, nr 4 (15.10.2017): 3145–56. http://dx.doi.org/10.1007/s11356-017-0403-6.
Pełny tekst źródłaSinha, Woormileela, Atif Mahammed, Natalia Fridman, Yael Diskin-Posner, Linda J. W. Shimon i Zeev Gross. "Superstructured metallocorroles for electrochemical CO2 reduction". Chemical Communications 55, nr 79 (2019): 11912–15. http://dx.doi.org/10.1039/c9cc06645d.
Pełny tekst źródłaCao, Lujie, Zhenyu Wang, Jinlong Liu, Bingxue Wang, Zhiqiang Wang, Mingyang Yang, Hui Pan i Zhouguang Lu. "A novel Mn/Co dual nanoparticle decorated hierarchical carbon structure derived from a biopolymer hydrogel as a highly efficient electro-catalyst for the oxygen reduction reaction". Chemical Communications 55, nr 92 (2019): 13900–13903. http://dx.doi.org/10.1039/c9cc07751k.
Pełny tekst źródłaEL Ouafy, Hayat, Tarik EL Ouafy, Mustapha Oubenali, Aziz EL Haimouti, Ahmed Gamouh i Mohamed Mbarki. "Electrocatalytic Effect of Al2O3 Supported on Clay in Oxidizing of Ibuprofen at Graphite Electrode". Methods and Objects of Chemical Analysis 16, nr 2 (2021): 81–87. http://dx.doi.org/10.17721/moca.2021.81-87.
Pełny tekst źródłaZhang, Xiaofeng, Xiaoying Wang, Lijuan Le, Ai Ma i Shen Lin. "A Pd/PW12/RGO Composite Catalyst Prepared by Electro-Codeposition for Formic Acid Electro-Oxidation". Journal of The Electrochemical Society 163, nr 2 (13.11.2015): F71—F78. http://dx.doi.org/10.1149/2.0401602jes.
Pełny tekst źródłaPham, Hau Quoc, i Tai Thien Huynh. "Correction: Facile room-temperature fabrication of a silver-platinum nanocoral catalyst towards hydrogen evolution and methanol electro-oxidation". Materials Advances 3, nr 4 (2022): 2234. http://dx.doi.org/10.1039/d2ma90011d.
Pełny tekst źródła