Artykuły w czasopismach na temat „Electrical Properties - Nanocomposites”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Electrical Properties - Nanocomposites”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Cho, Kie Yong, A. Ra Cho, Yun Jae Lee, Chong Min Koo, Soon Man Hong, Seung Sangh Wang, Ho Gyu Yoon i Kyung Youl Baek. "Enhanced Electrical Properties of PVDF-TrFE Nanocomposite for Actuator Application". Key Engineering Materials 605 (kwiecień 2014): 335–39. http://dx.doi.org/10.4028/www.scientific.net/kem.605.335.
Pełny tekst źródłaAbou El Fadl, Faten Ismail, Maysa A. Mohamed, Magida Mamdouh Mahmoud i Sayeda M. Ibrahim. "Studying the electrical conductivity and mechanical properties of irradiated natural rubber latex/magnetite nanocomposite". Radiochimica Acta 110, nr 2 (22.11.2021): 133–44. http://dx.doi.org/10.1515/ract-2021-1080.
Pełny tekst źródłaPolsterova, Helena. "Dielectric Properties of Nanocomposites Based on Epoxy Resin". ECS Transactions 105, nr 1 (30.11.2021): 461–66. http://dx.doi.org/10.1149/10501.0461ecst.
Pełny tekst źródłaSabo, Y. T., D. E. A. Boryo, I. Y. Chindo i A. M. Auwal. "Nanocomposites transformed from polystyrene waste/antimony, barium and nickel oxides nanoparticles with improved thermal and electrical properties". Nigerian Journal of Chemical Research 26, nr 2 (5.02.2022): 117–27. http://dx.doi.org/10.4314/njcr.v26i2.7.
Pełny tekst źródłaV. C. Morais, Manuel, Marco Marcellan, Nadine Sohn, Christof Hübner i Frank Henning. "Process Chain Optimization for SWCNT/Epoxy Nanocomposite Parts with Improved Electrical Properties". Journal of Composites Science 4, nr 3 (14.08.2020): 114. http://dx.doi.org/10.3390/jcs4030114.
Pełny tekst źródłaOuis, Nora, Assia Belarbi, Salima Mesli i Nassira Benharrats. "Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites". Chemistry & Chemical Technology 17, nr 1 (27.03.2023): 118–25. http://dx.doi.org/10.23939/chcht17.01.118.
Pełny tekst źródłaAbdulla, Estabraq T. "Synthesis and electrical properties of conductive polyaniline/ SWCNT nanocomposites". Iraqi Journal of Physics (IJP) 15, nr 34 (8.01.2019): 106–13. http://dx.doi.org/10.30723/ijp.v15i34.126.
Pełny tekst źródłaAlam, Rabeya Binta, Md Hasive Ahmad, S. M. Nazmus Sakib Pias, Eashika Mahmud i Muhammad Rakibul Islam. "Improved optical, electrical, and thermal properties of bio-inspired gelatin/SWCNT composite". AIP Advances 12, nr 4 (1.04.2022): 045317. http://dx.doi.org/10.1063/5.0089118.
Pełny tekst źródłaKasım, Hasan, i Murat Yazıcı. "Electrical Properties of Graphene / Natural Rubber Nanocomposites Coated Nylon 6.6 Fabric under Cyclic Loading". Periodica Polytechnica Chemical Engineering 63, nr 1 (18.06.2018): 160–69. http://dx.doi.org/10.3311/ppch.12122.
Pełny tekst źródłaWang, Shaojing, Peng Xu, Xiangyi Xu, Da Kang, Jie Chen, Zhe Li i Xingyi Huang. "Tailoring the Electrical Energy Storage Capability of Dielectric Polymer Nanocomposites via Engineering of the Host–Guest Interface by Phosphonic Acids". Molecules 27, nr 21 (25.10.2022): 7225. http://dx.doi.org/10.3390/molecules27217225.
Pełny tekst źródłaZAVYALOV, S. A., E. I. GRIGORIEV, A. S. ZAVYALOV, I. A. MISURKIN, S. V. TITOV, T. S. ZHURAVLEVA, I. V. KLIMENKO, A. N. PIVKINA, E. M. KELDER i J. SCHOONMAN. "STRUCTURE AND PROPERTIES OF TITANIUM–POLYMER THIN FILM NANOCOMPOSITES". International Journal of Nanoscience 04, nr 01 (luty 2005): 149–61. http://dx.doi.org/10.1142/s0219581x05003000.
Pełny tekst źródłaAlenazi, Mashal. "Electrical Properties of Nanocomposites". IARJSET 3, nr 4 (20.04.2016): 80–82. http://dx.doi.org/10.17148/iarjset.2016.3418.
Pełny tekst źródłaBanerjee, S., i D. Chakravorty. "Electrical Properties of Nanocomposites". Transactions of the Indian Ceramic Society 59, nr 1 (styczeń 2000): 1–11. http://dx.doi.org/10.1080/0371750x.2000.10799891.
Pełny tekst źródłaBackes, Eduardo H., Fabio R. Passador, Christian Leopold, Bodo Fiedler i Luiz A. Pessan. "Electrical, thermal and thermo-mechanical properties of epoxy/multi-wall carbon nanotubes/mineral fillers nanocomposites". Journal of Composite Materials 52, nr 23 (12.03.2018): 3209–17. http://dx.doi.org/10.1177/0021998318763497.
Pełny tekst źródłaAbd Razak, Jeefferie, Nor Aisah Khalid, Hazman Hasib, Mazlin Aida Mahamood, Mohd Muzafar Ismail, Noraiham Mohamad, Poppy Puspitasari i Moayad Husein Flaifel. "Electrical Conductivity and Antenna Properties of Polyaniline filled GNPs Nanocomposites". Malaysian Journal on Composites Science and Manufacturing 4, nr 1 (5.03.2021): 11–27. http://dx.doi.org/10.37934/mjcsm.4.1.1127.
Pełny tekst źródłaRamakrishnaiah, Thejas, Prasanna Gunderi Dhananjaya, Chaturmukha Vakwadi Sainagesh, Sathish Reddy, Swaroop Kumaraswamy i Naveen Chikkahanumajja Surendranatha. "A review: electrical and gas sensing properties of polyaniline/ferrite nanocomposites". Sensor Review 42, nr 1 (5.01.2022): 164–75. http://dx.doi.org/10.1108/sr-02-2021-0051.
Pełny tekst źródłaHrenechen, Jeferson Matos, Celso de Araujo Duarte, Ney Pereira Mattoso Filho i Evaldo Ribeiro. "Electrical and Optical Properties of Silicone Oil/Carbon Nanotube Nanocomposites". Journal of Nanoscience and Nanotechnology 21, nr 4 (1.04.2021): 2185–95. http://dx.doi.org/10.1166/jnn.2021.19073.
Pełny tekst źródłaStanciu, Nicoleta-Violeta, Felicia Stan, Ionut-Laurentiu Sandu, Catalin Fetecau i Adriana-Madalina Turcanu. "Thermal, Rheological, Mechanical, and Electrical Properties of Polypropylene/Multi-Walled Carbon Nanotube Nanocomposites". Polymers 13, nr 2 (7.01.2021): 187. http://dx.doi.org/10.3390/polym13020187.
Pełny tekst źródłaSultan, Adil, Sharique Ahmad i Faiz Mohammad. "Synthesis, Characterization and Electrical Properties of Polypyrrole/ Zirconia Nanocomposite and its Application as Ethene Gas Sensor". Polymers and Polymer Composites 25, nr 9 (listopad 2017): 695–704. http://dx.doi.org/10.1177/096739111702500908.
Pełny tekst źródłaMostaani, F., M. R. Moghbeli i H. Karimian. "Electrical conductivity, aging behavior, and electromagnetic interference (EMI) shielding properties of polyaniline/MWCNT nanocomposites". Journal of Thermoplastic Composite Materials 31, nr 10 (1.11.2017): 1393–415. http://dx.doi.org/10.1177/0892705717738294.
Pełny tekst źródłaNOH, HYUN-JI, SUNG-PILL NAM, SUNG-GAP LEE, BYEONG-LIB AHN, WOO-SIK WON, HYOUNG-GWAN WOO i SANG-MAN PARK. "ELECTRICAL AND MECHANICAL CHARACTERISTICS OF EPOXY-NANOCLAY COMPOSITE". Modern Physics Letters B 23, nr 31n32 (30.12.2009): 3925–30. http://dx.doi.org/10.1142/s0217984909022010.
Pełny tekst źródłaAl-Saleh, Mohammed H., i Mohammad R. Irshidat. "Effect of viscosity reducing agent on the properties of CNT/epoxy nanocomposites". Journal of Polymer Engineering 36, nr 4 (1.05.2016): 407–12. http://dx.doi.org/10.1515/polyeng-2015-0245.
Pełny tekst źródłaChandra, R. B. Jagadeesh, B. Shivamurthy, M. Sathish Kumar, Niranjan N. Prabhu i Devansh Sharma. "Mechanical and Electrical Properties and Electromagnetic-Wave-Shielding Effectiveness of Graphene-Nanoplatelet-Reinforced Acrylonitrile Butadiene Styrene Nanocomposites". Journal of Composites Science 7, nr 3 (14.03.2023): 117. http://dx.doi.org/10.3390/jcs7030117.
Pełny tekst źródłaSong, Jae Phil, Sung Ho Choi, Dae-Won Chung i Seong Jae Lee. "Latex-Based Polystyrene Nanocomposites with Non-Covalently Modified Carbon Nanotubes". Polymers 13, nr 7 (5.04.2021): 1168. http://dx.doi.org/10.3390/polym13071168.
Pełny tekst źródłaSánchez, Alejandro Gomez, Evgen Prokhorov, Gabriel Luna-Barcenas, Yuriy Kovalenko, Eric M. Rivera-Muñoz, Maria G. Raucci i Giovanna Buonocore. "Effect of Chemical Oxidation Routes on the Properties of Chitosan- MWCNT Nanocomposites". Current Nanoscience 15, nr 6 (11.10.2019): 618–25. http://dx.doi.org/10.2174/1573413714666181114105422.
Pełny tekst źródłaZheng, Wenyue, Lulu Ren, Xuetong Zhao, Can Wang, Lijun Yang i Ruijin Liao. "Roles of Al2O3@ZrO2 Particles in Modulating Crystalline Morphology and Electrical Properties of P(VDF-HFP) Nanocomposites". Molecules 27, nr 13 (4.07.2022): 4289. http://dx.doi.org/10.3390/molecules27134289.
Pełny tekst źródłaCuenca-Bracamonte, Quimberly, Mehrdad Yazdani-Pedram i Héctor Aguilar-Bolados. "Electrical Properties of Polyetherimide-Based Nanocomposites Filled with Reduced Graphene Oxide and Graphene Oxide-Barium Titanate-Based Hybrid Nanoparticles". Polymers 14, nr 20 (11.10.2022): 4266. http://dx.doi.org/10.3390/polym14204266.
Pełny tekst źródłaDul, Sithiprumnea, Alessandro Pegoretti i Luca Fambri. "Effects of the Nanofillers on Physical Properties of Acrylonitrile-Butadiene-Styrene Nanocomposites: Comparison of Graphene Nanoplatelets and Multiwall Carbon Nanotubes". Nanomaterials 8, nr 9 (29.08.2018): 674. http://dx.doi.org/10.3390/nano8090674.
Pełny tekst źródłaAlFannakh, Huda, S. S. Arafat i S. S. Ibrahim. "Synthesis, electrical properties, and kinetic thermal analysis of polyaniline/ polyvinyl alcohol - magnetite nanocomposites film". Science and Engineering of Composite Materials 26, nr 1 (28.01.2019): 347–59. http://dx.doi.org/10.1515/secm-2019-0020.
Pełny tekst źródłaDoagou-Rad, Saeed, Aminul Islam i Jakob Søndergaard Jensen. "Correlation of mechanical and electrical properties with processing variables in MWCNT reinforced thermoplastic nanocomposites". Journal of Composite Materials 52, nr 26 (4.04.2018): 3681–97. http://dx.doi.org/10.1177/0021998318768390.
Pełny tekst źródłaDarabi, Marjan, i Masoud Rajabi. "Synthesis of Cu-CNTs nanocomposites via double pressing double sintering method". Metallurgical and Materials Engineering 23, nr 4 (9.01.2018): 319–34. http://dx.doi.org/10.30544/244319.
Pełny tekst źródłaSun, Lan-Hui, Zoubeida Ounaies, Xin-Lin Gao, Casey A. Whalen i Zhen-Guo Yang. "Preparation, Characterization, and Modeling of Carbon Nanofiber/Epoxy Nanocomposites". Journal of Nanomaterials 2011 (2011): 1–8. http://dx.doi.org/10.1155/2011/307589.
Pełny tekst źródłaAkhtarian, Shiva, Hadi Veladi i Sajedeh Mohammadi Aref. "Fabrication and characterization of conductive poly(dimethylsiloxane)-carbon nanotube nanocomposites for potential microsensor applications". Sensor Review 39, nr 1 (21.01.2019): 1–9. http://dx.doi.org/10.1108/sr-04-2017-0055.
Pełny tekst źródłaBouchard, Jonas, Aurélie Cayla, Vincent Lutz, Christine Campagne i Eric Devaux. "Electrical and mechanical properties of phenoxy/multiwalled carbon nanotubes multifilament yarn processed by melt spinning". Textile Research Journal 82, nr 20 (26.06.2012): 2106–15. http://dx.doi.org/10.1177/0040517512450760.
Pełny tekst źródłaKandulna, R., U. Das, Ms Rimpi, B. Kachhap i N. Prasad. "Hybrid Polymeric Nanocomposites Based High Performance Oleds: A Review". Shodh Sankalp Journal 1, nr 3 (1.09.2021): 16–34. http://dx.doi.org/10.54051/shodh.2021.1.3.1.
Pełny tekst źródłaIzzati, Wan Akmal, Yanuar Z. Arief, Zuraimy Adzis i Mohd Shafanizam. "Partial Discharge Characteristics of Polymer Nanocomposite Materials in Electrical Insulation: A Review of Sample Preparation Techniques, Analysis Methods, Potential Applications, and Future Trends". Scientific World Journal 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/735070.
Pełny tekst źródłaMin, Daomin, Chenyu Yan, Rui Mi, Chao Ma, Yin Huang, Shengtao Li, Qingzhou Wu i Zhaoliang Xing. "Carrier Transport and Molecular Displacement Modulated dc Electrical Breakdown of Polypropylene Nanocomposites". Polymers 10, nr 11 (30.10.2018): 1207. http://dx.doi.org/10.3390/polym10111207.
Pełny tekst źródłaOkolo, Chinyere, Rafaila Rafique, Sadia Sagar Iqbal, Tayyab Subhani, Mohd Shahneel Saharudin, Badekai Ramachandra Bhat i Fawad Inam. "Customizable Ceramic Nanocomposites Using Carbon Nanotubes". Molecules 24, nr 17 (1.09.2019): 3176. http://dx.doi.org/10.3390/molecules24173176.
Pełny tekst źródłaBugaev, N. M., Ekaterina L. Kuznetsova i Kyaw Ye Ko. "Thermophysical and Magnetic Properties of Magnetite – Polyethylene Composite". International Journal of Mechanics 15 (9.09.2021): 165–71. http://dx.doi.org/10.46300/9104.2021.15.19.
Pełny tekst źródłaVidakis, Nectarios, Markos Petousis, Lazaros Tzounis, Emmanuel Velidakis, Nikolaos Mountakis i Sotirios A. Grammatikos. "Polyamide 12/Multiwalled Carbon Nanotube and Carbon Black Nanocomposites Manufactured by 3D Printing Fused Filament Fabrication: A Comparison of the Electrical, Thermoelectric, and Mechanical Properties". C 7, nr 2 (23.04.2021): 38. http://dx.doi.org/10.3390/c7020038.
Pełny tekst źródłaWang, Yongkun, Tianran Ma, Wenchao Tian, Junjue Ye, Xing Wang i Xiangjun Jiang. "Electroactive shape memory properties of graphene/epoxy-cyanate ester nanocomposites". Pigment & Resin Technology 47, nr 1 (2.01.2018): 72–78. http://dx.doi.org/10.1108/prt-04-2017-0037.
Pełny tekst źródłaLoughney, Patricia A., Shakir B. Mujib, Timothy L. Pruyn, Gurpreet Singh, Kathy Lu i Vicky Doan-Nguyen. "Enhancing organosilicon polymer-derived ceramic properties". Journal of Applied Physics 132, nr 7 (21.08.2022): 070901. http://dx.doi.org/10.1063/5.0085844.
Pełny tekst źródłaJin, Sung-Hun, i Dai-Soo Lee. "Electrical and Rheological Properties of Double Percolated Poly(methyl methacrylate)/Multiwalled Carbon Nanotube Nanocomposites". Journal of Nanoscience and Nanotechnology 7, nr 11 (1.11.2007): 3847–51. http://dx.doi.org/10.1166/jnn.2007.058.
Pełny tekst źródłaYoo, S. H., J. K. Yang, Sung Tag Oh, Kae Myung Kang, Sung Goon Kang, C. J. Lee i Yong Ho Choa. "The Synthesis and Characteristics of Homogenously Dispersed CNT-Al2O3 Nanocomposites by the Thermal CVD Method and Pulsed Electric Current Sintering Process". Solid State Phenomena 121-123 (marzec 2007): 295–98. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.295.
Pełny tekst źródłaPattanshetti, Virappa Virupaxappa, G. M. Shashidhara i Mysore Guruswamy Veena. "Dielectric and thermal properties of magnesium oxide/poly(aryl ether ketone) nanocomposites". Science and Engineering of Composite Materials 25, nr 5 (25.09.2018): 915–25. http://dx.doi.org/10.1515/secm-2016-0273.
Pełny tekst źródłaPraharaj, Ankita Pritam, Dibakar Behera, Tapan Kumar Bastia i Arun Kumar Rout. "BisGMA/EPDM/amine functionalised MWCNTs based nanocomposites". Pigment & Resin Technology 44, nr 5 (7.09.2015): 266–75. http://dx.doi.org/10.1108/prt-10-2014-0094.
Pełny tekst źródłaKasim, Hasan, Ahmad Naser Aldeen, Yücel Can i Murat Yazici. "Investigation of the Crack Propagation Behavior of the Multiwalled Carbon Nanotube/Graphite/Natural Rubber Hybrid Nanocomposites Using Digital Image Correlation Technique". Journal of Nanoelectronics and Optoelectronics 14, nr 12 (1.12.2019): 1766–70. http://dx.doi.org/10.1166/jno.2019.2675.
Pełny tekst źródłaABD RAZAK, SAIFUL IZWAN, SHARIF HUSSEIN SHARIF ZEIN i ABDUL LATIF AHMAD. "MnO2-FILLED MULTIWALLED CARBON NANOTUBE/POLYANILINE NANOCOMPOSITES: EFFECT OF LOADING ON THE CONDUCTION PROPERTIES AND ITS PERCOLATION THRESHOLD". Nano 06, nr 01 (luty 2011): 81–91. http://dx.doi.org/10.1142/s1793292011002378.
Pełny tekst źródłaDanikas, M., i S. Morsalin. "A Short Review on Polymer Nanocomposites for Enameled Wires: Possibilities and Perspectives". Engineering, Technology & Applied Science Research 9, nr 3 (8.06.2019): 4079–84. http://dx.doi.org/10.48084/etasr.2678.
Pełny tekst źródłaMoheimani, Seyed Kiomars, Mehran Dadkhah, Mohammad Hossein Mosallanejad i Abdollah Saboori. "Fabrication and Characterization of the Modified EV31-Based Metal Matrix Nanocomposites". Metals 11, nr 1 (10.01.2021): 125. http://dx.doi.org/10.3390/met11010125.
Pełny tekst źródła