Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Electrical Engineering: Power Electronics.

Artykuły w czasopismach na temat „Electrical Engineering: Power Electronics”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Electrical Engineering: Power Electronics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Wyman, Pat. "Power electronics and power engineering". Power Engineering Journal 7, nr 5 (1993): 194. http://dx.doi.org/10.1049/pe:19930047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Urayama, Takashi. "Power Electronics for Illuminating Engineering". JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 74, nr 11 (1990): 734–39. http://dx.doi.org/10.2150/jieij1980.74.11_734.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Afonso, Joao L., Mohamed Tanta, José Gabriel Oliveira Pinto, Luis F. C. Monteiro, Luis Machado, Tiago J. C. Sousa i Vitor Monteiro. "A Review on Power Electronics Technologies for Power Quality Improvement". Energies 14, nr 24 (20.12.2021): 8585. http://dx.doi.org/10.3390/en14248585.

Pełny tekst źródła
Streszczenie:
Nowadays, new challenges arise relating to the compensation of power quality problems, where the introduction of innovative solutions based on power electronics is of paramount importance. The evolution from conventional electrical power grids to smart grids requires the use of a large number of power electronics converters, indispensable for the integration of key technologies, such as renewable energies, electric mobility and energy storage systems, which adds importance to power quality issues. Addressing these topics, this paper presents an extensive review on power electronics technologies applied to power quality improvement, highlighting, and explaining the main phenomena associated with the occurrence of power quality problems in smart grids, their cause and effects for different activity sectors, and the main power electronics topologies for each technological solution. More specifically, the paper presents a review and classification of the main power quality problems and the respective context with the standards, a review of power quality problems related to the power production from renewables, the contextualization with solid-state transformers, electric mobility and electrical railway systems, a review of power electronics solutions to compensate the main power quality problems, as well as power electronics solutions to guarantee high levels of power quality. Relevant experimental results and exemplificative developed power electronics prototypes are also presented throughout the paper.
Style APA, Harvard, Vancouver, ISO itp.
4

Robinson, I. M. "An Undergraduate Power Electronics Laboratory". International Journal of Electrical Engineering & Education 24, nr 3 (lipiec 1987): 239–49. http://dx.doi.org/10.1177/002072098702400310.

Pełny tekst źródła
Streszczenie:
The development of an undergraduate laboratory supporting the teaching of power electronics and electrical drives is described. This laboratory is used for standard experiments, but more importantly has led to the introduction of student-centred hardware and software design exercises. Such studies have improved student awareness of power engineering without detracting from the overall emphasis upon electronics within their course.
Style APA, Harvard, Vancouver, ISO itp.
5

Wada, Keiji. "Tokyo Metropolitan University, Department of Electrical and Electronic Engineering, Power Electronics Laboratory". Journal of The Japan Institute of Electronics Packaging 16, nr 1 (2013): 77. http://dx.doi.org/10.5104/jiep.16.77.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Urayama, Takashi. "Power Electronics for Illuminating Engineering (2)". JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 73, nr 4 (1989): 191–96. http://dx.doi.org/10.2150/jieij1980.73.4_191.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Urayama, Takashi. "Power Electronics for Illuminating Engineering (6)". JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 74, nr 3 (1990): 167–71. http://dx.doi.org/10.2150/jieij1980.74.3_167.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Lazarev, G. B. "Power electronics". Russian Electrical Engineering 79, nr 6 (czerwiec 2008): 287. http://dx.doi.org/10.3103/s1068371208060011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lazarev, G. B. "Power electronics". Russian Electrical Engineering 80, nr 6 (czerwiec 2009): 293. http://dx.doi.org/10.3103/s1068371209060017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Gole, A. M., A. Keri, C. Nwankpa, E. W. Gunther, H. W. Dommel, I. Hassan, J. R. Marti i in. "Guidelines for Modeling Power Electronics in Electric Power Engineering Applications". IEEE Power Engineering Review 17, nr 1 (styczeń 1997): 71. http://dx.doi.org/10.1109/mper.1997.560721.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Trzynadlowski, A. "Modern Power Electronics". IEEE Power Engineering Review 18, nr 7 (lipiec 1998): 31. http://dx.doi.org/10.1109/mper.1998.686953.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Li, Yan Chao. "The Applications for Electrical Energy Saving in Engineering Design". Applied Mechanics and Materials 587-589 (lipiec 2014): 365–73. http://dx.doi.org/10.4028/www.scientific.net/amm.587-589.365.

Pełny tekst źródła
Streszczenie:
the content focuses on the principle that electrical energy saving design should follow, which discusses the technical measures of architecture electrical energy saving and its reasonable applications in engineering design by various aspects and terms such as transformer selection, supply and distribution system and line design, system power factor improvement, lighting energy saving, motor energy saving, power saving type LV electronics selection, etc.
Style APA, Harvard, Vancouver, ISO itp.
13

Miller, T. J. E. "Power Electronics". Power Engineering Journal 2, nr 6 (1988): 304. http://dx.doi.org/10.1049/pe:19880065.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Marinescu, Andrei. "Wireless Transfer of Electric Power - a Disruptive Technology". Annals of the University of Craiova, Electrical Engineering Series 45, nr 1 (30.12.2021): 1–8. http://dx.doi.org/10.52846/aucee.2021.1.01.

Pełny tekst źródła
Streszczenie:
Wireless (contactless) transfer of electric power is a disruptive technology because it abandons wired transmission technology, the only technology used in electrical and electronic engineering until recently, just like in the past animal traction and film photography were replaced by mechanical traction and digital photography. Although revealed at the end of the nineteenth century through Tesla’s inventions, it could be applied in practice only in the ‘80s of the twentieth century, with the development of power electronics and microprocessors. After an introduction and an overview of the operating principles, the paper presents the readiness level reached by this technology, the stage of standardization, Romanian achievements and future prospects for high power applications.
Style APA, Harvard, Vancouver, ISO itp.
15

Averbukh, M. "Improved dimensionless nomograms approach in the electric drives and power electronics courses". International Journal of Electrical Engineering & Education 56, nr 1 (23.05.2018): 38–50. http://dx.doi.org/10.1177/0020720918776459.

Pełny tekst źródła
Streszczenie:
Parameter estimation of the nonlinear electronic schemes, including inductances, capacitances, resistances, and switches represents a nontrivial problem in the “power electronics” and “electrical drives” courses. Difficulties could be observed during solutions of electrical circuits, which describe the behavior of electric motors in drives, and various electronic appliances are being used in power electronics. This situation is a result of complicated analytical approaches aiming to solve nonlinear ordinary differential equations describing the occurring processes. A typical student has a significant problem in attaining the analytical results. Various methods of linearization nonlinear elements permitting to obtain roughly analytical solutions and simplified solution were applied over the past. Nowadays, coarsely obtained results are not acceptable as a rule. As a result, smart simulation based on PSIM, MATLAB Simulink, and WOLFRAM Mathematica giving excellent opportunity for accurate answers are recommended. All software programs represent undoubtedly important and extremely accurate approaches. However, only numerical results are provided and are not capable of solution’s generalization. It seems that in the Power Electronics and Electrical Drives courses, a wide submission could obtain methods of numerical nomograms with dimensionless representation of input–output parameters. Dimensionless approach allows significant diminishing of a number of decisive parameters and simplifies calculation, whereas keeping acceptable precision of results, as well as a possibility of outcome’s generalization and representation variables trends in a wide range of input parameters. The likely objects of analysis may be, for example, output characteristics of DC motors fed by controllable and uncontrollable n-phase rectifiers, resistive rectifier losses and motor’s efficiency, average and root mean square currents or voltages in electronic circuits, total harmonic distortion, and others. Long-time practice of these approaches approved their usefulness, productivity, and helpfulness.
Style APA, Harvard, Vancouver, ISO itp.
16

Ralls, K. J. "The growth of power electronics in electrical power transmission systems". Power Engineering Journal 9, nr 1 (1.02.1995): 15–23. http://dx.doi.org/10.1049/pe:19950105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Dewi, Citra, Doni Tri Putra Yanto i Hastuti Hastuti. "THE DEVELOPMENT OF POWER ELECTRONICS TRAINING KITS FOR ELECTRICAL ENGINEERING STUDENTS: A VALIDITY TEST ANALYSIS". JURNAL PENDIDIKAN TEKNOLOGI KEJURUAN 3, nr 2 (10.07.2020): 114–20. http://dx.doi.org/10.24036/jptk.v3i2.9423.

Pełny tekst źródła
Streszczenie:
This study discusses one of the stages of the research in the development of the Power Electronics Training Kits in the learning process of the Power Electronics Practicum for Electrical Engineering students, namely the validity test analysis. The validity of the Power Electronics Training Kits is divided into three aspects, namely design, media/laboratory equipment, and materials aspects. Each of these aspects was validated each by two validators who had expertise in these aspects. The instrument used in testing this validity was a validated questionnaire that had gone through the previous instrument validation process. The analysis was carried out using Aikens V Analysis. Validity analysis results are interpreted with the product development validity interpretation table by Aiken's to obtain the validity category. The results showed the Training Kits is valid in all aspects both aspects of design, media/laboratory equipment, and materials. The design aspect gained a value of V = 0.89 with a valid category, the media/laboratory equipment aspect gained a value of V = 0.88 which means valid, and the material aspect gained a value of V = 0.94 with a valid category. Thus, it can be concluded that the Power Electronics Training Kits developed for the learning process of the Power Electronics Practicum for Electrical Engineering students is valid in the aspects of design, media/laboratory equipment, and materials.
Style APA, Harvard, Vancouver, ISO itp.
18

Fukao, Tadashi. "Power Electronics. I. Expectations for and Roles of Power Electronics." IEEJ Transactions on Industry Applications 112, nr 1 (1992): 2–5. http://dx.doi.org/10.1541/ieejias.112.2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

MARINESCU, ANDREI. "The Romanian wireless power transfer network". Journal of Engineering Sciences and Innovation 5, nr 12 (3.06.2020): 149–56. http://dx.doi.org/10.56958/jesi.2020.5.2.6.

Pełny tekst źródła
Streszczenie:
"Wireless power transfer (WPT) is a disruptive technology because it gives up the technology of wire transmission, the only one used in electrical and electronic engineering so far. Although made known since the end of the 19th century through the inventions of Nikola Tesla, WPT became applicable in practice only in the 80s of the 20th century with the progress of power - and micro-electronics. The field is now being studied and applied worldwide for transferred power from a few W up to hundreds of kW, as part of electric mobility and beyond. The fact that numerous researches and applications of the WPT have already been carried out in Romania led to the need for a better collaboration and knowledge which resulted in the creation of the national network of interests - WPT Romanian Network (WPT Rom Net) - presented in this paper. "
Style APA, Harvard, Vancouver, ISO itp.
20

Sun, Jian. "Editorial: Power Electronics Letters". IEEE Transactions on Power Electronics 25, nr 2 (luty 2010): 261–62. http://dx.doi.org/10.1109/tpel.2010.2041689.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Fewson, D. "Introduction to power electronics". IEEE Power Engineering Review 19, nr 9 (wrzesień 1999): 44. http://dx.doi.org/10.1109/mper.1999.785806.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Edwards, C. "Powering ahead [power electronics]". Engineering & Technology 8, nr 11 (1.12.2013): 52. http://dx.doi.org/10.1049/et.2013.1105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

"Power electronics". Russian Electrical Engineering 79, nr 10 (październik 2008): 525. http://dx.doi.org/10.3103/s1068371208100015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Riani, Elsa Cipto, Adi Thoha i Aisyah Amini. "E-Jobsheet in Power Electronics Practicum Course". ELECTROLYTE 1, nr 02 (26.06.2022). http://dx.doi.org/10.54482/electrolyte.v1i02.168.

Pełny tekst źródła
Streszczenie:
The purpose of this research is to produce an e-Jobsheet on Power Electronics Practicum that is valid, practical, and effective for electrical engineering students at the Padang State University. The research method used is research and development. The findings of this study are that this research has succeeded in developing an e-jobsheet in the Power Electronics Practicum that has been developed effectively, judging by the cognitive and psychomotor learning outcomes of students. Based on the difference between the results of the pretest and posttest, it can be concluded that e-joobheet has been effective. The implication of this research is that the e-Jobsheet can be used by lecturers in the Power Electronics Practicum course at the Department of Electrical Engineering, Padang State University.
Style APA, Harvard, Vancouver, ISO itp.
25

Paret, Paul, Donal Finegan i Sreekant Narumanchi. "Artificial Intelligence for Power Electronics in Electric Vehicles: Challenges and Opportunities". Journal of Electronic Packaging, 24.11.2022, 1–30. http://dx.doi.org/10.1115/1.4056306.

Pełny tekst źródła
Streszczenie:
Abstract Progress in the field of power electronics within electric vehicles has generally been driven by conventional engineering design principles and experiential learning. Power electronics is inherently a multidomain field where semiconductor physics and electrical, thermal, and mechanical design knowledge converge to achieve a practical realization of desired targets in the form of conversion efficiency, power density, and reliability. Due to the promising nature of artificial intelligence in delivering rapid results, engineers are starting to explore the ways in which it can contribute to making power electronics more compact and reliable. Here, we conduct a brief review of the foray of artificial intelligence in three distinct sub-technologies within a power electronics system in the context of electric vehicles: semiconductor devices, power electronics module design and prognostics, and thermal management design. The intent is not to report an exhaustive literature review, but to identify the state of the art and opportunities for artificial intelligence to play a meaningful role in power electronics design, as well as to discuss a few promising future research directions.
Style APA, Harvard, Vancouver, ISO itp.
26

"Research Group Introduction : Power Electronics Laboratory, Dept.of Electrical and Electronic Engineering, Tokyo Metropolitan University". IEEJ Transactions on Industry Applications 130, nr 10 (2010): NL10_5. http://dx.doi.org/10.1541/ieejias.130.nl10_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

"IEEE Power Electronics Society Southern Power Electronics Conference". IEEE Power Electronics Magazine 7, nr 2 (czerwiec 2020): 99. http://dx.doi.org/10.1109/mpel.2020.2990616.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 36, nr 5 (maj 2021): C2. http://dx.doi.org/10.1109/tpel.2020.3049041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 36, nr 5 (maj 2021): C3. http://dx.doi.org/10.1109/tpel.2020.3049043.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 36, nr 6 (czerwiec 2021): C3. http://dx.doi.org/10.1109/tpel.2021.3054322.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 36, nr 6 (czerwiec 2021): C2. http://dx.doi.org/10.1109/tpel.2021.3054321.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 37, nr 10 (październik 2022): C2. http://dx.doi.org/10.1109/tpel.2022.3183943.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 37, nr 10 (październik 2022): C3. http://dx.doi.org/10.1109/tpel.2022.3183945.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 37, nr 11 (listopad 2022): C2. http://dx.doi.org/10.1109/tpel.2022.3191454.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 37, nr 11 (listopad 2022): C3. http://dx.doi.org/10.1109/tpel.2022.3191456.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 37, nr 9 (wrzesień 2022): C3. http://dx.doi.org/10.1109/tpel.2022.3175103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 37, nr 8 (sierpień 2022): C3. http://dx.doi.org/10.1109/tpel.2022.3169302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 36, nr 9 (wrzesień 2021): C2. http://dx.doi.org/10.1109/tpel.2021.3075307.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 36, nr 9 (wrzesień 2021): C3. http://dx.doi.org/10.1109/tpel.2021.3075313.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 37, nr 4 (kwiecień 2022): C3. http://dx.doi.org/10.1109/tpel.2021.3136106.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 37, nr 3 (marzec 2022): C2. http://dx.doi.org/10.1109/tpel.2021.3127377.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 37, nr 3 (marzec 2022): C3. http://dx.doi.org/10.1109/tpel.2021.3127380.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 36, nr 11 (listopad 2021): C3. http://dx.doi.org/10.1109/tpel.2021.3095636.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 36, nr 11 (listopad 2021): C2. http://dx.doi.org/10.1109/tpel.2021.3095634.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 36, nr 10 (październik 2021): C2. http://dx.doi.org/10.1109/tpel.2021.3086993.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 36, nr 10 (październik 2021): C3. http://dx.doi.org/10.1109/tpel.2021.3086995.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 36, nr 12 (grudzień 2021): C3. http://dx.doi.org/10.1109/tpel.2021.3102717.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 36, nr 12 (grudzień 2021): C2. http://dx.doi.org/10.1109/tpel.2021.3102715.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 36, nr 7 (lipiec 2021): C3. http://dx.doi.org/10.1109/tpel.2021.3061836.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

"IEEE Power Electronics Society". IEEE Transactions on Power Electronics 36, nr 7 (lipiec 2021): C2. http://dx.doi.org/10.1109/tpel.2021.3061754.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii