Gotowa bibliografia na temat „Electrical Engineering: Power Electronics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Electrical Engineering: Power Electronics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Electrical Engineering: Power Electronics"
Wyman, Pat. "Power electronics and power engineering". Power Engineering Journal 7, nr 5 (1993): 194. http://dx.doi.org/10.1049/pe:19930047.
Pełny tekst źródłaUrayama, Takashi. "Power Electronics for Illuminating Engineering". JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 74, nr 11 (1990): 734–39. http://dx.doi.org/10.2150/jieij1980.74.11_734.
Pełny tekst źródłaAfonso, Joao L., Mohamed Tanta, José Gabriel Oliveira Pinto, Luis F. C. Monteiro, Luis Machado, Tiago J. C. Sousa i Vitor Monteiro. "A Review on Power Electronics Technologies for Power Quality Improvement". Energies 14, nr 24 (20.12.2021): 8585. http://dx.doi.org/10.3390/en14248585.
Pełny tekst źródłaRobinson, I. M. "An Undergraduate Power Electronics Laboratory". International Journal of Electrical Engineering & Education 24, nr 3 (lipiec 1987): 239–49. http://dx.doi.org/10.1177/002072098702400310.
Pełny tekst źródłaWada, Keiji. "Tokyo Metropolitan University, Department of Electrical and Electronic Engineering, Power Electronics Laboratory". Journal of The Japan Institute of Electronics Packaging 16, nr 1 (2013): 77. http://dx.doi.org/10.5104/jiep.16.77.
Pełny tekst źródłaUrayama, Takashi. "Power Electronics for Illuminating Engineering (2)". JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 73, nr 4 (1989): 191–96. http://dx.doi.org/10.2150/jieij1980.73.4_191.
Pełny tekst źródłaUrayama, Takashi. "Power Electronics for Illuminating Engineering (6)". JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 74, nr 3 (1990): 167–71. http://dx.doi.org/10.2150/jieij1980.74.3_167.
Pełny tekst źródłaLazarev, G. B. "Power electronics". Russian Electrical Engineering 79, nr 6 (czerwiec 2008): 287. http://dx.doi.org/10.3103/s1068371208060011.
Pełny tekst źródłaLazarev, G. B. "Power electronics". Russian Electrical Engineering 80, nr 6 (czerwiec 2009): 293. http://dx.doi.org/10.3103/s1068371209060017.
Pełny tekst źródłaGole, A. M., A. Keri, C. Nwankpa, E. W. Gunther, H. W. Dommel, I. Hassan, J. R. Marti i in. "Guidelines for Modeling Power Electronics in Electric Power Engineering Applications". IEEE Power Engineering Review 17, nr 1 (styczeń 1997): 71. http://dx.doi.org/10.1109/mper.1997.560721.
Pełny tekst źródłaRozprawy doktorskie na temat "Electrical Engineering: Power Electronics"
Sheard, Benjamin Charles De Villiers. "An electrical power system for CubeSats". Master's thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/20101.
Pełny tekst źródłaDas, Debosmita. "Advanced power electronics for hybrid energy systems". The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1412940298.
Pełny tekst źródłaDas, Sauparna 1979. "Magnetic machines and power electronics for power MEMS applications". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/34465.
Pełny tekst źródłaIncludes bibliographical references (p. 321-323).
This thesis presents the modeling, design, and characterization of microfabricated, surface-wound, permanent-magnet (PM) generators, and their power electronics, for use in Watt-level Power MEMS applications such as a microscale gas turbine engine. The generators are three-phase, axial-flux, synchronous machines, comprising a rotor with an annular PM and ferromagnetic core, and a stator with multi-turn surface windings on a soft magnetic substrate. The fabrication of the PM generators, as well as the development of their high-speed spinning rotor test stand, was carried out by collaborators at the Georgia Institute of Technology. The machines are modeled by analytically solving 2D magneto-quasistatic Maxwell's Equations as a function of radius and then integrating the field solutions over the radial span of the machine to determine the open-circuit voltage, torque and losses in the stator core. The model provides a computationally fast method to determine power and efficiency of an axial-air-gap PM machine as a function of geometry, speed and material properties. Both passive and active power electronics have been built and tested. The passive power electronics consist of a three-phase transformer and diode bridge rectifier.
(cont.) The active power electronics consist of a switch-mode rectifier based on the boost semi-bridge topology which is used to convert the unregulated AC generator voltages to a regulated 12 V DC without the need for rotor position/speed or stator terminal current/voltage sensing. At the rotational speed of 300,000 rpm, one generator converts 16.2 W of mechanical power to electrical power. Coupled to the transformer and diode bridge rectifier, it delivers 8 W DC to a resistive load. This is the highest output power ever delivered by a microscale electric generator to date. The corresponding power and current densities of 57.8 MW/m3 and 6x 108 A/m2, respectively, are much higher than those of a macroscale electric generator. At the rotational speed of 300,000 rpm, the generator and switch-mode rectifier delivered 5.5 W DC to a resistive load at a power density three times that of the passive electronics. This Watt-scale electrical power generation demonstrates the viability of scaled PM machines and power electronics for practical Power MEMS applications.
by Sauparna Das.
Ph.D.
Pan, Haibo 1973. "SMES for power quality improvement and uninterruptible power supply". Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33342.
Pełny tekst źródłaThe PQ/UPS SMES system as well as the power network has been modeled using Matlab/Simulink simulation environment for convenience. The Simulink models of all relevant components are also presented. Finally, all the evaluation tests are also done in Simulink simulation environment.
Martinez, Manuel Madrigal. "Modelling of power electronics controllers for harmonic analysis in power systems". Thesis, University of Glasgow, 2001. http://theses.gla.ac.uk/2836/.
Pełny tekst źródłaMcNeill, John Neville. "Current transformer circuits for power electronics applications". Thesis, Edinburgh Napier University, 2008. http://researchrepository.napier.ac.uk/Output/6196.
Pełny tekst źródłaLi, Jinbo 1961. "A study of reactive power dispatch under restructured power systems /". Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=80120.
Pełny tekst źródłaThe first follows the two-step approach adopted by some electricity markets where first, the generators' real powers are dispatched in the energy market, followed by the dispatching of the generator reactive power support services in the ancillary services market.
Once the generators' real power has been dispatched in the energy market, the generators' reactive power is dispatched according to the minimization of a combination of multiple objectives: network MW loss cost, generator opportunity cost, and generator MW shift cost. The MW loss cost is represented as a function of bus voltage magnitudes and angles as well as the nodal prices in $/MWh found in the first step. Opportunity cost is represented as a function of the generator reactive powers, whose cost parameters are derived in terms of the MW dispatch, the MW nodal prices and the generators' capabilities. The generator shift cost is represented as a function of the generator real powers and the MW shift weighting factor. As these three objectives may conflict, compromises are needed to arrive at an optimum solution.
The second reactive power dispatch approach unifies real and reactive power dispatch by minimizing both MW and MVAr generation costs while enforcing the MW and MVAr/voltage constraints simultaneously. This unified dispatch avoids a disadvantage of the two-step MVAr dispatch, that is, that the MW price signal determined in the energy market may be distorted by the subsequent MVAr dispatch in the ancillary services market.
Several numerical examples under different conditions are presented to examine and compare the effectiveness of these two methods.
Araghchini, Mohammad. "(MEMS) toroidal magnetics for integrated power electronics". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84882.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 237-241).
Power electronics represent a key technology for improving the functionality and performance, and reducing the energy consumption of many systems. However, the size, cost, and performance constraints of conventional power electronics currently limit their use. This is especially true in relatively high-voltage, low-power applications such as off-line power supplies, light-emitting diode (LED) drivers, converters and inverters for photovoltaic panels, and battery interface converters; a LED driver application serves as a motivation example throughout the thesis. Advances in the miniaturization and integration of energy-conversion circuitry in this voltage and power range would have a tremendous impact on many such applications. Magnetic components are often the largest and most expensive components in power electronic circuits and are responsible for a large portion of the power loss. As operating frequencies are increased, the physical size of the passives can, in theory, be reduced while maintaining or improving efficiency. Realizing this reduction in size and the simultaneous improvement in efficiency and power density of power electronic circuits requires improvements in magnetics technology. This thesis focuses on the challenge of improving magnetics through the analysis, optimization, and design of air-core toroidal inductors for integration into high-efficiency, high-frequency power electronic circuits. The first part of the thesis presents the derivation of models for stored energy, resistance and parasitic capacitance of microfabricated toroidal inductors developed for use in integrated power electronics. The models are then reduced to a sinusoidal-steady-state equivalent-circuit model. Two types of toroidal MEMS inductors are considered: in-silicon inductors (with or without silicon core) and in-insulator inductors. These inductors have low profiles and a single-layer winding fabricated via high-aspect-ratio molding and electroplating. Such inductors inevitably have a significant gap between winding turns. This makes the equivalent resistance more difficult to model. The low profile increases the significance of energy stored in the winding which, together with the winding gap, makes the equivalent inductance more difficult to model as well. The models presented in this thesis account for these effects. In the case of in-silicon inductors, magnetically and electrically driven losses in different regions of silicon are modeled analytically as well. The second part of the thesis focuses on the optimized design of microfabricated toroidal inductors for a LED driver. The models developed in the first part of the thesis allow optimization of inductor designs based on objectives such as minimizing substrate area, maximizing efficiency, and simplifying the fabrication process by maximizing minimum feature size. Because the magnetics size and loss depend strongly on the driver design parameters, and the driver performance depends strongly on the inductance value and loss, the simultaneous optimization of driver components and magnetics parameters is used in the design process. The use of computationally efficient models for both magnetics and other circuit components permits numerical optimization using the general co-optimization approach. Finally, a multi-dimensional Pareto-optimal filtering is applied to reduce the feasible design set to those on the multi-objective optimality frontier. For the case of LED drivers, the current state of the art efficiencies range from 65% to 90%. The co-optimization process results in efficiencies greater than 90% while reducing the size of the LED driver by 10 to 100 times compared to the commercially available LED drivers. This is a significant improvement in both the efficiency and the size of the LED drivers. In the resulting designs, the magnetics are no longer the largest part of the circuit. In the third part of the thesis several numerical and experimental tests are presented. The models developed in this thesis, are verified against results from 2D FEA, 3D FEA, direct measurement of MEMS fabricated devices (for both in-insulator devices for flip-chip bonding and in-silicon devices for direct integration), and in-circuit experimentation of the fabricated devices. These tests show that the equivalent-circuit models presented in this thesis have greater accuracy than existing models. The results also show that these models are good enough to support the LED driver optimization.
by Mohammad Araghchini.
Ph.D.
Sun, Bo. "A FPGA-based power electronics controller for three-phase four-wire hybrid active power filters". Thesis, University of Macau, 2011. http://umaclib3.umac.mo/record=b2547180.
Pełny tekst źródłaAl, Johani Ebrahim Dakhil. "Surface transfer doping of diamond for power electronics". Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129079.
Pełny tekst źródłaCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 77-80).
The quest for a suitable wide-bandgap semiconductor for high-power and high-frequency applications is well motivated; wide-bandgap semiconductors generally exhibit a high breakdown field and can therefore support a high voltage over short distances. Diamond (Bandgap of 5.5 eV) in particular is an attractive prospect since its thermal conductivity and radiation hardness well surpass other wide-bandgap semiconductors. However, practical transistors require the ability to engineer the charge density through substitutional doping which has proven to be difficult considering the strong covalent bonds that make up bulk diamond. In this work, we utilize hydrogen-passivated diamond surface along with surface acceptors to generate a highly conductive 2D hole sheet at the surface with carrier densities going up to 10¹⁴ cm⁻². Surface transfer doping using stable high electron affinity transition-metal oxides (TMO) such as WO₃ in conjunction with the novel contact-first process explored in this work shows great promise on advancing process stability while attaining the high current densities desired in the future of power diamond transistors. We closely examine the H-terminated diamond/TMO interface using a numerical approach based on a Schrödinger-Poisson solver package. We identify key inconsistencies in the generic valence-to-conduction transfer model for both shallow and deep TMO electron affinity regimes. We report that introducing deep level impurities in the TMO have shown improvements to the effect of bias modulation and agreement with experiments for low TMO affinities. A solution for engineering a preexisting TMO with fixed affinity and trap level is presented through TMO thickness engineering. The methods explored in this work show promise towards the enhancement of diamond conductivity and reproducibility.
by Ebrahim D. Aljohani.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Książki na temat "Electrical Engineering: Power Electronics"
C, Dorf Richard, red. The electrical engineering handbook. Wyd. 3. Boca Raton, FL: CRC/Taylor & Francis, 2006.
Znajdź pełny tekst źródłaL, Skvarenina Timothy, red. The power electronics handbook. Boca Raton, Fla: CRC Press, 2002.
Znajdź pełny tekst źródłaPolyakov, Anatoliy, Maksim Ivanov, Elena Ryzhkova i Ekaterina Filimonova. Electrical engineering and electronics: laboratory workshop. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1214583.
Pełny tekst źródłaMarchenko, Aleksey, i Yu Babichev. Electrical engineering. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1587594.
Pełny tekst źródłaFundamentals of power electronics. New York: Chapman & Hall, 1997.
Znajdź pełny tekst źródła1961-, Maksimović Dragan, red. Fundamentals of power electronics. Wyd. 2. Norwell, Mass: Kluwer Academic, 2001.
Znajdź pełny tekst źródłaZheng, Dehuai. Advances in Electrical Engineering and Electrical Machines. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
Znajdź pełny tekst źródłaElectrical engineering reference manual for the power, electrical and electronics, and computer PE exams. Wyd. 8. Belmont, CA: Professional Publications, 2009.
Znajdź pełny tekst źródłaGibilisco, Stan. Teach Yourself Electricity and Electronics. New York: McGraw-Hill, 2006.
Znajdź pełny tekst źródłaTeach yourself electricity and electronics. Wyd. 2. New York: McGraw-Hill, 1997.
Znajdź pełny tekst źródłaCzęści książek na temat "Electrical Engineering: Power Electronics"
Morris, Noel M. "Power Electronics". W Mastering Electrical Engineering, 296–316. London: Macmillan Education UK, 1985. http://dx.doi.org/10.1007/978-1-349-18015-8_16.
Pełny tekst źródłaMorris, Noel M. "Power Electronics". W Mastering Electrical Engineering, 296–316. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-12230-1_16.
Pełny tekst źródłaWarnes, Lionel. "Power electronics". W Electronic and Electrical Engineering, 347–65. London: Macmillan Education UK, 1998. http://dx.doi.org/10.1007/978-1-349-15052-6_19.
Pełny tekst źródłaWarnes, Lionel. "Power electronics". W Electronic and Electrical Engineering, 350–68. London: Macmillan Education UK, 2003. http://dx.doi.org/10.1007/978-0-230-21633-4_19.
Pełny tekst źródłaWarnes, L. A. A. "Power electronics". W Electronic and Electrical Engineering, 334–53. London: Macmillan Education UK, 1994. http://dx.doi.org/10.1007/978-1-349-13012-2_18.
Pełny tekst źródłaWarnes, L. A. A. "Power amplifiers and power supplies". W Electronic and Electrical Engineering, 211–26. London: Macmillan Education UK, 1994. http://dx.doi.org/10.1007/978-1-349-13012-2_11.
Pełny tekst źródłaWarnes, Lionel. "Power amplifiers, power supplies and batteries". W Electronic and Electrical Engineering, 220–42. London: Macmillan Education UK, 1998. http://dx.doi.org/10.1007/978-1-349-15052-6_12.
Pełny tekst źródłaWarnes, Lionel. "Power amplifiers, power supplies and batteries". W Electronic and Electrical Engineering, 227–48. London: Macmillan Education UK, 2003. http://dx.doi.org/10.1007/978-0-230-21633-4_12.
Pełny tekst źródłaCao, Jianbo, E. Shiju, Tianfeng Zhao, Xilin Zhu, Chunfu Gao i Anfeng Hui. "Influencing Factors on Power Generation Mode of Electroactive Polymer". W Advanced Electrical and Electronics Engineering, 201–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19712-3_25.
Pełny tekst źródłaLi, Zheng-ming, Xiao-hui Xia i Yan-yan Yan. "One Improvement Control Method of Maximum Power Point Tracking". W Advanced Electrical and Electronics Engineering, 503–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19712-3_64.
Pełny tekst źródłaStreszczenia konferencji na temat "Electrical Engineering: Power Electronics"
"Power Engineering, Electrical Engineering, Electromechanics". W 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2018. http://dx.doi.org/10.1109/apeie.2018.8545354.
Pełny tekst źródłaWatts, R. E., K. Fedje, E. R. Brown i M. C. Shaw. "Thermomechatronics of Power Electronics". W ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41805.
Pełny tekst źródła"Department of Electrical and Electronics Engineering Amritapuri campus". W 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy). IEEE, 2017. http://dx.doi.org/10.1109/tapenergy.2017.8397201.
Pełny tekst źródłaBonatto, Luciano, Jonatas R. Kinas, Mauricio de Campos, Paulo S. Sausen, Manuel M. P. Reimbold i Airam T. R. Z. Sausen. "Development of an urban electric vehicle as multidisciplinary work in electrical engineering". W 2013 Brazilian Power Electronics Conference (COBEP 2013). IEEE, 2013. http://dx.doi.org/10.1109/cobep.2013.6785198.
Pełny tekst źródłaDeVoto, Douglas, i Patrick McCluskey. "Reliable Power Electronics for Wind Turbines". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11776.
Pełny tekst źródłaFussi, Angelika. "Electrical Engineering and Power Electronics Promotion for Secondary School Kids". W 2006 12th International Power Electronics and Motion Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/epepemc.2006.283171.
Pełny tekst źródłaFussi, Angelika. "Electrical Engineering and Power Electronics Promotion for Secondary School Kids". W 2006 12th International Power Electronics and Motion Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/epepemc.2006.4778717.
Pełny tekst źródłaCheng, K. W. E. "Electric Vehicle and Electrical Engineering Teaching Experience During Pandemic Disease". W 2022 9th International Conference on Power Electronics Systems and Applications (PESA). IEEE, 2022. http://dx.doi.org/10.1109/pesa55501.2022.10038404.
Pełny tekst źródłaKhomfoi, Surin. "Power electronics roles in Thailand smart grid". W 2014 International Electrical Engineering Congress (iEECON). IEEE, 2014. http://dx.doi.org/10.1109/ieecon.2014.6925978.
Pełny tekst źródłaDrofenik, U., A. Musing i J. W. Kolar. "Novel online simulator for education of power electronics and electrical engineering". W 2010 International Power Electronics Conference (IPEC - Sapporo). IEEE, 2010. http://dx.doi.org/10.1109/ipec.2010.5543198.
Pełny tekst źródłaRaporty organizacyjne na temat "Electrical Engineering: Power Electronics"
Gonzalez, J. A. Electronics and Electrical Engineering Laboratory:. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4803.
Pełny tekst źródłaGonzales, J. A. Electronics and Electrical Engineering Laboratory:. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4850.
Pełny tekst źródłaGonzalez, J. A. Electronics and Electrical Engineering Laboratory:. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4929.
Pełny tekst źródłaRohrbaugh, J. M. Electronics and Electrical Engineering Laboratory:. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.ir.5607.
Pełny tekst źródłaRohrbaugh, J. M. Electronics and Electrical Engineering Laboratory:. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.ir.5608.
Pełny tekst źródłaRohrbaugh, J. M. Electronics and Electrical Engineering Laboratory:. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.ir.5669.
Pełny tekst źródłaRohrbaugh, J. M. Electronics and Electrical Engineering Laboratory:. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.ir.5709.
Pełny tekst źródłaRohrbaugh, J. M. Electronics and Electrical Engineering Laboratory:. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.ir.5773.
Pełny tekst źródłaRohrbaugh, J. M. Electronics and Electrical Engineering Laboratory:. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5774.
Pełny tekst źródłaRohrbaugh, J. M. Electronics and Electrical Engineering Laboratory:. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5815.
Pełny tekst źródła