Artykuły w czasopismach na temat „ELECTRIC RESONANCE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „ELECTRIC RESONANCE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Bleaney, B. "Magneto-electric resonance". Applied Magnetic Resonance 20, nr 1-2 (luty 2001): 203–5. http://dx.doi.org/10.1007/bf03162320.
Pełny tekst źródłaTang Ming-Chun, Xiao Shao-Qiu, Deng Tian-Wei, Bai Yan-Ying, Guan Jian i Wang Bing-Zhong. "Miniaturized electric resonance metamaterial". Acta Physica Sinica 59, nr 7 (2010): 4715. http://dx.doi.org/10.7498/aps.59.4715.
Pełny tekst źródłaHan, Aoxue, Colm Dineen, Viktoriia E. Babicheva i Jerome V. Moloney. "Second harmonic generation in metasurfaces with multipole resonant coupling". Nanophotonics 9, nr 11 (5.07.2020): 3545–56. http://dx.doi.org/10.1515/nanoph-2020-0193.
Pełny tekst źródłaShami, Zein Alabidin, Christophe Giraud-Audine i Olivier Thomas. "A nonlinear piezoelectric shunt absorber with 2:1 internal resonance: experimental proof of concept". Smart Materials and Structures 31, nr 3 (28.01.2022): 035006. http://dx.doi.org/10.1088/1361-665x/ac4ab5.
Pełny tekst źródłaDecker, M., T. Pertsch i I. Staude. "Strong coupling in hybrid metal–dielectric nanoresonators". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, nr 2090 (28.03.2017): 20160312. http://dx.doi.org/10.1098/rsta.2016.0312.
Pełny tekst źródłaNguyen Thi, Thuy, Ngoc Tran Minh, Tu Vu Minh i Dung Pham Thi. "STUDY ELECTROMAGNETIC WAVE INTERACTION OF ACTIVE-MATRIX THIN FILM TRANSISTORS". Journal of Science Natural Science 65, nr 10 (październik 2020): 24–28. http://dx.doi.org/10.18173/2354-1059.2020-0044.
Pełny tekst źródłaThornton, Jack. "Pulling Power from the Road". Mechanical Engineering 136, nr 04 (1.04.2014): 44–49. http://dx.doi.org/10.1115/1.2014-apr-3.
Pełny tekst źródłaNakayama, S., H. Akimune, Y. Arimoto, I. Daito, H. Fujimura, Y. Fujita, M. Fujiwara i in. "Isovector Electric Monopole Resonance in60Ni". Physical Review Letters 83, nr 4 (26.07.1999): 690–93. http://dx.doi.org/10.1103/physrevlett.83.690.
Pełny tekst źródłaAndrianov, B. A. "Electric analog of magnetic resonance". Technical Physics Letters 26, nr 3 (marzec 2000): 228–30. http://dx.doi.org/10.1134/1.1262800.
Pełny tekst źródłaMori, N., N. Nakamura, K. Taniguchi i C. Hamaguchi. "Electric field-induced magnetophonon resonance". Solid-State Electronics 31, nr 3-4 (marzec 1988): 777–80. http://dx.doi.org/10.1016/0038-1101(88)90387-5.
Pełny tekst źródłaLiboff, A. R. "Electric-field ion cyclotron resonance". Bioelectromagnetics 18, nr 1 (1997): 85–87. http://dx.doi.org/10.1002/(sici)1521-186x(1997)18:1<85::aid-bem13>3.0.co;2-p.
Pełny tekst źródłaMelik-Gaykazyan, Elizaveta V., Maxim R. Shcherbakov, Alexander S. Shorokhov, Isabelle Staude, Igal Brener, Dragomir N. Neshev, Yuri S. Kivshar i Andrey A. Fedyanin. "Third-harmonic generation from Mie-type resonances of isolated all-dielectric nanoparticles". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, nr 2090 (28.03.2017): 20160281. http://dx.doi.org/10.1098/rsta.2016.0281.
Pełny tekst źródłaTaguchi, M. "Poloidal electric field due to electron-cyclotron resonance heating in tokamaks". Journal of Plasma Physics 47, nr 2 (kwiecień 1992): 261–69. http://dx.doi.org/10.1017/s0022377800024211.
Pełny tekst źródłaXu, Wei Kai, Ying Chun Tang i Wei Wang. "Study on the Electromagnetic Responses of Split Ring Resonator in THz Regions". Advanced Materials Research 760-762 (wrzesień 2013): 302–5. http://dx.doi.org/10.4028/www.scientific.net/amr.760-762.302.
Pełny tekst źródłaWang, Shuang, Song Wang, Quan Li, Xiaoli Zhao i Jianyu Zhu. "Dual Toroidal Dipole Resonance Metamaterials under a Terahertz Domain". Materials 11, nr 10 (19.10.2018): 2036. http://dx.doi.org/10.3390/ma11102036.
Pełny tekst źródłaRosenspire, A. J., A. L. Kindzelskii i H. R. Petty. "Pulsed DC electric fields couple to natural NAD(P)H oscillations in HT-1080 fibrosarcoma cells". Journal of Cell Science 114, nr 8 (15.04.2001): 1515–20. http://dx.doi.org/10.1242/jcs.114.8.1515.
Pełny tekst źródłaLarin, Vasily, i Daniil Matveev. "Study of Transient Interaction in a System with Transformer Supplied from Network through a Cable: Assessment of Interaction Frequencies and Resonance Evolvement". Journal of Energy - Energija 63, nr 1-4 (4.07.2022): 252–61. http://dx.doi.org/10.37798/2014631-4185.
Pełny tekst źródłaChaldyshev, V. V., E. V. Kundelev, A. N. Poddubny, A. P. Vasil'ev, M. A. Yagovkina, Y. Chen, N. Maharjan, Z. Liu, M. L. Nakarmi i N. M. Shakya. "Optical properties of AlGaAs/GaAs resonant Bragg structure at the second quantum state". Физика и техника полупроводников 52, nr 4 (2018): 466. http://dx.doi.org/10.21883/ftp.2018.04.45815.04.
Pełny tekst źródłaBrescia, Jonathan R., Justin W. Cleary, Evan M. Smith i Robert E. Peale. "Infrared Propagating Electromagnetic Surface Waves Excited by Induction". MRS Advances 5, nr 35-36 (23.12.2019): 1827–36. http://dx.doi.org/10.1557/adv.2019.472.
Pełny tekst źródłaJo, Subin, Min-Gyu Bae i Joong-Wook Lee. "Controllable Fano-like Resonance in Terahertz Planar Meta-Rotamers". Applied Sciences 11, nr 21 (20.10.2021): 9796. http://dx.doi.org/10.3390/app11219796.
Pełny tekst źródłaKim, Ju Ho, i Chin-Wook Chung. "Plasma and electrical characteristics depending on an antenna position in an inductively coupled plasma with a passive resonant antenna". Plasma Sources Science and Technology 31, nr 1 (1.01.2022): 015002. http://dx.doi.org/10.1088/1361-6595/ac4146.
Pełny tekst źródłaSersa, I., O. Jarh i F. Demsar. "Magnetic Resonance Microscopy of Electric Currents". Journal of Magnetic Resonance, Series A 111, nr 1 (listopad 1994): 93–99. http://dx.doi.org/10.1006/jmra.1994.1230.
Pełny tekst źródłaBabicheva, Viktoriia E., i Jerome V. Moloney. "Lattice effect influence on the electric and magnetic dipole resonance overlap in a disk array". Nanophotonics 7, nr 10 (26.09.2018): 1663–68. http://dx.doi.org/10.1515/nanoph-2018-0107.
Pełny tekst źródłaQawaqzeh, Mohamed, Roman Zaitsev, Oleksandr Miroshnyk, Mykhailo Kirichenko, Dmytro Danylchenko i Liliia Zaitseva. "High-voltage DC converter for solar power station". International Journal of Power Electronics and Drive Systems (IJPEDS) 11, nr 4 (1.12.2020): 2135. http://dx.doi.org/10.11591/ijpeds.v11.i4.pp2135-2144.
Pełny tekst źródłaWandowski, T., P. Malinowski, L. Skarbek i W. Ostachowicz. "Moisture detection in carbon fiber reinforced polymer composites using electromechanical impedance technique". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230, nr 2 (26.02.2015): 331–36. http://dx.doi.org/10.1177/0954406215574239.
Pełny tekst źródłaTELENKOV, M. P., i YU A. MITYAGIN. "SEQUENTIAL RESONANT TUNNELING BETWEEN LANDAU LEVELS IN GaAs\AlGaAs SUPERLATTICES IN STRONG TILTED MAGNETIC AND ELECTRIC FIELDS". International Journal of Modern Physics B 21, nr 08n09 (10.04.2007): 1594–99. http://dx.doi.org/10.1142/s0217979207043269.
Pełny tekst źródłaYin, Xiao-gang, You-wen Liu i Cheng-ping Huang. "Trapped mode resonances in symmetric rectangular-hole tetramers". Journal of Physics D: Applied Physics 55, nr 4 (25.10.2021): 045302. http://dx.doi.org/10.1088/1361-6463/ac2e8d.
Pełny tekst źródłaDuan, Guan, Yingwei Li i Chi Tan. "A Bridge-Shaped Vibration Energy Harvester with Resonance Frequency Tunability under DC Bias Electric Field". Micromachines 13, nr 8 (31.07.2022): 1227. http://dx.doi.org/10.3390/mi13081227.
Pełny tekst źródłaZheng, Huadan, Haoyang Lin, Lei Dong, Yihua Liu, Pietro Patimisco, John Zweck, Ali Mozumder i in. "Influence of Tuning Fork Resonance Properties on Quartz-Enhanced Photoacoustic Spectroscopy Performance". Sensors 19, nr 18 (4.09.2019): 3825. http://dx.doi.org/10.3390/s19183825.
Pełny tekst źródłaBatygin, Yuriy, Svitlana Shinderuk, Evgen Chaplygin, Olena Yeryomina i Egor Tereh. "Introduction of an additional source of harmonic signal into the circuit of the electric power resonant amplifier". Automobile transport, nr 51 (29.12.2022): 66–73. http://dx.doi.org/10.30977/at.2219-8342.2022.51.0.07.
Pełny tekst źródłaVdovychenko, A. V. "RESONANCE SYSTEM OF WIRELESS ENERGY TRANSMISSION WITH USING OF THE ELECTRIC FIELD". Tekhnichna Elektrodynamika 2023, nr 5 (28.08.2023): 8–13. http://dx.doi.org/10.15407/techned2023.05.008.
Pełny tekst źródłaGrindlay, J. "The driven quantum-mechanical two-level system: small fields and long relaxation times". Canadian Journal of Physics 65, nr 1 (1.01.1987): 82–87. http://dx.doi.org/10.1139/p87-014.
Pełny tekst źródłaLiu, Hai, Xu Zhang, Benlei Zhao, Bo Wu, Hancheng Zhang i Shoufeng Tang. "Simultaneous Measurements of Refractive Index and Methane Concentration through Electromagnetic Fano Resonance Coupling in All-Dielectric Metasurface". Sensors 21, nr 11 (22.05.2021): 3612. http://dx.doi.org/10.3390/s21113612.
Pełny tekst źródłaMorisaki, Yoshihiko. "Imprisonment of Resonance Radiation in Electric Discharge". IEEJ Transactions on Fundamentals and Materials 118, nr 2 (1998): 107–14. http://dx.doi.org/10.1541/ieejfms1990.118.2_107.
Pełny tekst źródłaGopalan, Sudha, S. Rodriguez, J. Mycielski, A. Witowski, M. Grynberg i A. Wittlin. "Electric-dipole spin resonance inn-typeCd1−xMnxSe". Physical Review B 34, nr 8 (15.10.1986): 5466–74. http://dx.doi.org/10.1103/physrevb.34.5466.
Pełny tekst źródłaMikac, Urš, Franci Demšar, Katarina Beravs i Igor Serša. "Magnetic resonance imaging of alternating electric currents". Magnetic Resonance Imaging 19, nr 6 (lipiec 2001): 845–56. http://dx.doi.org/10.1016/s0730-725x(01)00393-9.
Pełny tekst źródłaCampbell, W. R. "Practical Solution of Resonance of Electric Motors". Shock and Vibration Digest 26, nr 1 (1.01.1994): 13–16. http://dx.doi.org/10.1177/058310249402600103.
Pełny tekst źródłaZhao, Yi-Xin, Hao-Sen Kang, Wen-Qin Zhao, You-Long Chen, Liang Ma, Si-Jing Ding, Xiang-Bai Chen i Qu-Quan Wang. "Dual Plasmon Resonances and Tunable Electric Field in Structure-Adjustable Au Nanoflowers for Improved SERS and Photocatalysis". Nanomaterials 11, nr 9 (25.08.2021): 2176. http://dx.doi.org/10.3390/nano11092176.
Pełny tekst źródłaJian, Ye, i VanDorpe Pol. "Nanocrosses with Highly Tunable Double Resonances for Near-Infrared Surface-Enhanced Raman Scattering". International Journal of Optics 2012 (2012): 1–5. http://dx.doi.org/10.1155/2012/745982.
Pełny tekst źródłaGaponenko, Roman, Ilia Rasskazov, Alexander Moroz, Dmitry Pidgayko, Konstantin Ladutenko, Alexey Shcherbakov i Pavel Belov. "Excitation of a homogeneous dielectric sphere by a point electric dipole". Journal of Physics: Conference Series 2015, nr 1 (1.11.2021): 012043. http://dx.doi.org/10.1088/1742-6596/2015/1/012043.
Pełny tekst źródłaMizuno, Mamoru, Nozomi Odagiri i Mitsuhiro Okayasu. "Variation of Material Properties of Piezoelectric Ceramics due to Electric Loading Evaluated by Resonance Frequency". Key Engineering Materials 345-346 (sierpień 2007): 1521–24. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.1521.
Pełny tekst źródłaQu, Mei Ling, Xin Zhi Shi, Chang Qi i Gao Feng Wang. "Analysis and Simulation of Wireless Power Transfer System Based on Magnetic Resonances". Advanced Materials Research 516-517 (maj 2012): 1737–41. http://dx.doi.org/10.4028/www.scientific.net/amr.516-517.1737.
Pełny tekst źródłaLi, Hui, Yigeng Peng i Ruifeng Lu. "Substrate-Modulated Electric and Magnetic Resonances of Lithium Niobite Nanoparticles Illuminated by White Light". Nanomaterials 12, nr 12 (10.06.2022): 2010. http://dx.doi.org/10.3390/nano12122010.
Pełny tekst źródłaPersson, Bertil R. R., i Freddy Ståhlberg. "Safety Aspects of Magnetic Resonance Examinations". International Journal of Technology Assessment in Health Care 1, nr 3 (lipiec 1985): 647–65. http://dx.doi.org/10.1017/s0266462300001549.
Pełny tekst źródłaSamson, J. C., R. Rankin i V. T. Tikhonchuk. "Optical signatures of auroral arcs produced by field line resonances: comparison with satellite observations and modeling". Annales Geophysicae 21, nr 4 (30.04.2003): 933–45. http://dx.doi.org/10.5194/angeo-21-933-2003.
Pełny tekst źródłaVolkov, S. V., O. V. Goryachev, A. G. Efromeev i A. O. Stepochkin. "Calculation of the Parameters of a Mathematical Model of an Electric Hybrid Stepper Motor Based on the Analysis of the Magneto Static Field Pattern". Mekhatronika, Avtomatizatsiya, Upravlenie 20, nr 8 (8.08.2019): 482–89. http://dx.doi.org/10.17587/mau.20.482-489.
Pełny tekst źródłaKhomitsky D. V. i Zaprudnov N. A. "Spin-dependent tunneling in a double quantum dot in the "slow" evolution regime". Semiconductors 56, nr 10 (2022): 748. http://dx.doi.org/10.21883/sc.2022.10.55025.9875.
Pełny tekst źródłaMUÑUZURI, A. P., V. PÉREZ-MUÑUZURI, M. GÓMEZ-GESTEIRA, V. I. KRINSKY i V. PÉREZ-VILLAR. "MECHANISM OF PARAMETRIC RESONANCE OF VORTICES IN EXCITABLE MEDIA". International Journal of Bifurcation and Chaos 04, nr 05 (październik 1994): 1245–56. http://dx.doi.org/10.1142/s0218127494000939.
Pełny tekst źródłaPrestwich, W. V., M. A. Islam i T. J. Kennett. "Electric quadrupole transitions". Canadian Journal of Physics 69, nr 7 (1.07.1991): 855–63. http://dx.doi.org/10.1139/p91-139.
Pełny tekst źródłaMaharjan, Nikesh, Vladimir Chaldyshev i Mim Lal Nakarmi. "Resonant optical studies of GaAs/AlGaAs Multiple Quantum Well based Bragg Structures at excited states". MRS Advances 4, nr 11-12 (2019): 651–59. http://dx.doi.org/10.1557/adv.2019.21.
Pełny tekst źródła