Gotowa bibliografia na temat „Electric double-layer formation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Electric double-layer formation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Electric double-layer formation"
Qu, Danqi, i Hui-Chia Yu. "Direct Numerical Simulation of Electric Double Layer Formation". ECS Meeting Abstracts MA2020-01, nr 1 (1.05.2020): 133. http://dx.doi.org/10.1149/ma2020-011133mtgabs.
Pełny tekst źródłaXu, Yan, Wei Dong Yi i Ko Wen Jwo. "Research on the Electrical Model of a Capacitive Soil Moisture Sensor". Applied Mechanics and Materials 260-261 (grudzień 2012): 917–25. http://dx.doi.org/10.4028/www.scientific.net/amm.260-261.917.
Pełny tekst źródłaQu, Danqi, Robert Termuhlen i Hui-Chia Yu. "Direct Numerical Simulation of Electric Double Layer Formation in Supercapacitors". ECS Meeting Abstracts MA2020-02, nr 3 (23.11.2020): 533. http://dx.doi.org/10.1149/ma2020-023533mtgabs.
Pełny tekst źródłaJargulinski, W., i J. Szelka. "Formation of a Double Electric Layer on the Metal-Plastic Boundary". Materials Science 40, nr 5 (wrzesień 2004): 702–5. http://dx.doi.org/10.1007/s11003-005-0104-z.
Pełny tekst źródłaTeuber, M., M. Strautmann, J. Drillkens i D. U. Sauer. "Lifetime and Performance Assessment of Commercial Electric Double-Layer Capacitors Based on Cover Layer Formation". ACS Applied Materials & Interfaces 11, nr 20 (30.04.2019): 18313–22. http://dx.doi.org/10.1021/acsami.9b00057.
Pełny tekst źródłaHsieh, Chien-Te, i Yi-Tian Lin. "Synthesis of mesoporous carbon composite and its electric double-layer formation behavior". Microporous and Mesoporous Materials 93, nr 1-3 (lipiec 2006): 232–39. http://dx.doi.org/10.1016/j.micromeso.2006.02.017.
Pełny tekst źródłaKrishnan, Karthik, Premkumar Jayaraman, Subramanian Balasubramanian i Ulaganathan Mani. "Nanoionic transport and electric double layer formation at the electrode/polymer interface for high-performance supercapacitors". Journal of Materials Chemistry A 6, nr 46 (2018): 23650–58. http://dx.doi.org/10.1039/c8ta09524h.
Pełny tekst źródłaLennartsson, W. "Some aspects of double layer formation in a plasma constrained by a magnetic mirror". Laser and Particle Beams 5, nr 2 (maj 1987): 315–24. http://dx.doi.org/10.1017/s0263034600002792.
Pełny tekst źródłaBrodskaya, Elena. "Role of Water in the Formation of the Electric Double Layer of Micelles". Journal of Physical Chemistry B 116, nr 19 (8.05.2012): 5795–800. http://dx.doi.org/10.1021/jp3024183.
Pełny tekst źródłaICHIYANAGI, Mitsuhisa, Shankar Devasenathipathy, Yohei SATO i Koichi HISHIDA. "Transient Characteristic of Electric Double Layer Formation in Buffer Solutions by Varying pH". Proceedings of the Thermal Engineering Conference 2003 (2003): 429–30. http://dx.doi.org/10.1299/jsmeted.2003.429.
Pełny tekst źródłaRozprawy doktorskie na temat "Electric double-layer formation"
Hou, Chia-Hung. "Electrical double layer formation in nanoporous carbon materials". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22698.
Pełny tekst źródłaCommittee Chair: Sotira Yiacoumi; Committee Co-Chair: Costas Tsouris; Committee Member: Ching-Hua Huang; Committee Member: Sankar Nair; Committee Member: Spyros G. Pavlostathis.
Yang, Kun-Lin. "Electrical double-layer formation at the nanoscale : molecular modeling and applications". Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/20123.
Pełny tekst źródłaGosika, Mounika. "Surface Adsorption of Dendrimers: Structure, Interactions at Graphene/Water Interface and Applications in Supercapacitors". Thesis, 2019. https://etd.iisc.ac.in/handle/2005/5373.
Pełny tekst źródłaYen, Yo-Hsien, i 顏佑憲. "Formation of Electrical Double Layer of Organic Ions during Charging/Discharging of Mesoporous Carbon Electrodes". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/50002283685307548803.
Pełny tekst źródła國立清華大學
化學工程學系
102
High surface-area microporous carbon materials have been developed for increased energy storage in capacitors, but the high diffusion resistance in micropores may limit the ion transport during charging/discharging and hence compromised current density. To improve the efficiency of high surface-area electrodes, synthesis of carbon materials with well-defined pore shape/size ranging from nano- to micro-meter scales is the recent focus. In this study, in-situ small-angle X-ray scattering (SAXS) is adopted for structural characterization and elucidation of organic ion (EMI+ and TFSI−) transport during charging/discharging cycles. Two porous carbon materials of different pore distributions, coded as SCB (unimodal) and 1227 (multimodal), are investigated. For both carbon materials, cyclic voltammetry in a window of −2 to 2 V at scan rates of 100 and 10 mV/s indicates scan rate-insensitive specific capacitance, i.e., the multimodal pore distribution does not significantly enhance ion transport at a high scan rate, as the pore sizes are much greater than the organic ions. This is consistent with the observation that the ratio of specific capacitance values between the two carbon materials lies generally in the range of 1.45−1.50, close to the ratio of 1.42 in BET-determined surface areas. Comparison between SAXS profiles of dry carbon powders with those of the carbon electrodes after 6-hr soaking in the EMI+-TFSI− electrolyte indicates a general decrease in intensity (due to decreased contrast) for shoulders representing pores of different sizes, again indicating free-filling of pores by the neutral electrolyte. Assuming a core-shell model for the double layer structure in the presence of an applied potential, the SAXS profiles show that there is always a shell (ca. 0.7 nm in thickness) of counter-ions adhering to the pore wall, hence the pore contrast is dominated by the electron density differences between the co-ion-rich core and the carbon matrix, which decreases upon negative charging and increases upon positive charging. The SAXS profiles of 1227 are first fitted in the low- to medium-q ranges by use of a power-law contribution (representing fractal-like features) and two ploydisperse-sphere form factors (23 and 9 nm, respectively, in mean diameter) with hard sphere interaction. These contributions are then subtracted from the SAXS profiles to reveal the contribution of small pores (ca. 2.3 nm in mean diameter) in the range of q = 0.075 to 0.1 Å−1. For SCB, we use the integrated intensity for q = 0.02–0.03 Å−1 and for q = 0.06–0.08 Å−1to represent form factors of Rg = 9 nm and 2.3 nm, respectively. Both approaches consistently indicate simultaneous contrast changes in pores of different sizes during positive and negative charging at 10 mV/s for both 1227 and SCB, suggesting that the double-layer structure individually forms in pores of all sizes. On the other hand, integrated SAXS intensity in q ranges of 0.02–0.03 Å−1 and the high-q extreme of 0.9–1.0 Å−1 during full-window charging at 10 mV/s indicate opposite changes in intensity. This is explained in terms of the dominance of contrast between counter-ion-rich shell layer of dense packing and matrix responsible for intensity in the high-q extreme.
Części książek na temat "Electric double-layer formation"
Zhang, H. "Electrokinetic Properties". W Chemistry of Variable Charge Soils. Oxford University Press, 1997. http://dx.doi.org/10.1093/oso/9780195097450.003.0010.
Pełny tekst źródłaYang, Kun-Lin, Sotira Yiacoumi i Costas Tsouris. "Electrical Double-Layer Formation". W Dekker Encyclopedia of Nanoscience and Nanotechnology, Second Edition - Six Volume Set (Print Version). CRC Press, 2004. http://dx.doi.org/10.1201/9781439834398.ch60.
Pełny tekst źródłaYang, Kun-Lin, Costas Tsouris i Sotira Yiacoumi. "Electrical Double-Layer Formation". W Dekker Encyclopedia of Nanoscience and Nanotechnology, Second Edition - Six Volume Set (Print Version), 1157–70. CRC Press, 2008. http://dx.doi.org/10.1201/noe0849396397.ch102.
Pełny tekst źródłaYang, Kun-Lin, Sotira Yiacoumi i Costas Tsouris. "Electrical Double-Layer Formation". W Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition, 1246–59. CRC Press, 2014. http://dx.doi.org/10.1081/e-enn3-120009064.
Pełny tekst źródłaLin, Shiquan, Xiangyu Chen i Zhong Lin Wang. "Electron transfer in liquid–solid contact electrification and double-layer formation". W Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-85669-0.00142-2.
Pełny tekst źródłaStreszczenia konferencji na temat "Electric double-layer formation"
Sharma, Neeraj, Gerardo Diaz i Edbertho Leal-Quiros. "Effects of Externally Applied Electric Field on the Electric Double Layer Formed in an Electrolyte Layer and its Contribution Towards Joule Heating". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63329.
Pełny tekst źródłaValent, Ivan. "Kinetics of the electric double layer formation modelled by the finite difference method". W PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2017 (ICCMSE-2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5012494.
Pełny tekst źródłaYang, Qianli, S. Wu, N. Stone i Xiaoquing Li. "Formation of the electric double layer and its effects on moving bodies in a space plasma environment". W 27th Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2312.
Pełny tekst źródłaSarkar, Dibyo, Siddhartha Das i Sushanta K. Mitra. "Effect of Charge Distribution at the Three Phase Contact Line for an Electrolyte Drop". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63357.
Pełny tekst źródłaAlmutairi, Zeyad, Carolyn Ren i Leonardo Simon. "Improving the Electrokinetic Properties of PDMS With Surface Treatments". W ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31241.
Pełny tekst źródłaScholz, Mathias, i Dominik P. J. Barz. "The Influence of Electroosmotic Flow on the Von Kármán Vortex Street in the Wake of a Cylinder Located in a Microchannel". W ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icnmm2015-48330.
Pełny tekst źródłaGunda, Naga Siva Kumar, Suman Chakraborty i Sushanta Kumar Mitra. "The Study of Combined Electroosmotic and Pressure Driven Flow in Wavy Nanochannels". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39255.
Pełny tekst źródłaSilveira de Araujo, Isa, i Zoya Heidari. "Quantification of Adsorption of Water on Clay Surfaces and Electrical Double Layer Properties Using Molecular Simulations". W 2022 SPWLA 63rd Annual Symposium. Society of Petrophysicists and Well Log Analysts, 2022. http://dx.doi.org/10.30632/spwla-2022-0005.
Pełny tekst źródłaEbrahimpour Tolouei, Nadia, Shima Ghamari i Mohammad Shavezipur. "Investigation of the Effect of Native Oxide Layer on Performance of Interdigitated Impedance-Based Silicon Biochemical Sensors". W ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22207.
Pełny tekst źródłaRadwan, Ali, Mahmoud Ahmed i Shinichi Ookawara. "Performance of Concentrated Photovoltaic Cells Using Various Microchannel Heat Sink Designs". W ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59411.
Pełny tekst źródła