Artykuły w czasopismach na temat „Elasticity- Nanostructure”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Elasticity- Nanostructure”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
M. Roy, Arunabha. "Evolution of Martensitic Nanostructure in NiAl Alloys: Tip Splitting and Bending". Material Science Research India 17, SpecialIssue1 (1.08.2020): 03–06. http://dx.doi.org/10.13005/msri.17.special-issue1.02.
Pełny tekst źródłaChowdhury, R., S. Adhikari i F. Scarpa. "Elasticity and piezoelectricity of zinc oxide nanostructure". Physica E: Low-dimensional Systems and Nanostructures 42, nr 8 (czerwiec 2010): 2036–40. http://dx.doi.org/10.1016/j.physe.2010.03.018.
Pełny tekst źródłaISLAM, Z. M., P. JIA i C. W. LIM. "TORSIONAL WAVE PROPAGATION AND VIBRATION OF CIRCULAR NANOSTRUCTURES BASED ON NONLOCAL ELASTICITY THEORY". International Journal of Applied Mechanics 06, nr 02 (17.03.2014): 1450011. http://dx.doi.org/10.1142/s1758825114500112.
Pełny tekst źródłaDindarloo, Mohammad Hassan, Li Li, Rossana Dimitri i Francesco Tornabene. "Nonlocal Elasticity Response of Doubly-Curved Nanoshells". Symmetry 12, nr 3 (16.03.2020): 466. http://dx.doi.org/10.3390/sym12030466.
Pełny tekst źródłaZhang, Y., L. J. Zhuo i H. S. Zhao. "Determining the effects of surface elasticity and surface stress by measuring the shifts of resonant frequencies". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, nr 2159 (8.11.2013): 20130449. http://dx.doi.org/10.1098/rspa.2013.0449.
Pełny tekst źródłaElbourne, Aaron, James Chapman, Amy Gelmi, Daniel Cozzolino, Russell J. Crawford i Vi Khanh Truong. "Bacterial-nanostructure interactions: The role of cell elasticity and adhesion forces". Journal of Colloid and Interface Science 546 (czerwiec 2019): 192–210. http://dx.doi.org/10.1016/j.jcis.2019.03.050.
Pełny tekst źródłaTamm, Aile, Tauno Kahro, Helle-Mai Piirsoo i Taivo Jõgiaas. "Atomic-Layer-Deposition-Made Very Thin Layer of Al2O3, Improves the Young’s Modulus of Graphene". Applied Sciences 12, nr 5 (27.02.2022): 2491. http://dx.doi.org/10.3390/app12052491.
Pełny tekst źródłaIvanova, Elena P., Denver P. Linklater, Marco Werner, Vladimir A. Baulin, XiuMei Xu, Nandi Vrancken, Sergey Rubanov i in. "The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces". Proceedings of the National Academy of Sciences 117, nr 23 (26.05.2020): 12598–605. http://dx.doi.org/10.1073/pnas.1916680117.
Pełny tekst źródłaTaghvaei, Mohammad Mahdi, Hossein Mostaan, Mahdi Rafiei, Hamid Reza Bakhsheshi-Rad i Filippo Berto. "Nanoscale Tribological Properties of Nanostructure Fe3Al and (Fe,Ti)3Al Compounds Fabricated by Spark Plasma Sintering Method". Metals 12, nr 7 (23.06.2022): 1077. http://dx.doi.org/10.3390/met12071077.
Pełny tekst źródłaHashemzadeh, Allahverdi, Ghorbani, Soleymani, Kocsis, Fischer, Ertl i Naderi-Manesh. "Gold Nanowires/Fibrin Nanostructure as Microfluidics Platforms for Enhancing Stem Cell Differentiation: Bio-AFM Study". Micromachines 11, nr 1 (30.12.2019): 50. http://dx.doi.org/10.3390/mi11010050.
Pełny tekst źródłaBrusnitsina, Evgenia, Razilia Muftakhetdinova, Grigoriy Yakovlev i Victor Grokhovsky. "Nanoindentation of Phase and Structural Components of Pallasite Seymchan (PMG)". KnE Engineering 1, nr 1 (15.04.2019): 34. http://dx.doi.org/10.18502/keg.v1i1.4388.
Pełny tekst źródłaFlorini, Nikoletta, George P. Dimitrakopulos, Joseph Kioseoglou, Nikos T. Pelekanos i Thomas Kehagias. "Strain field determination in III–V heteroepitaxy coupling finite elements with experimental and theoretical techniques at the nanoscale". Journal of the Mechanical Behavior of Materials 26, nr 1-2 (25.04.2017): 1–8. http://dx.doi.org/10.1515/jmbm-2017-0009.
Pełny tekst źródłaFatahian, E., Ebrahim Hosseini i H. Fatahian. "A review on recent research studies on vibration analysis of fluid-conveying nanotubes". International Journal of Engineering Technology and Sciences 7, nr 2 (23.09.2020): 42–54. http://dx.doi.org/10.15282/ijets.7.2.2020.1004.
Pełny tekst źródłaZhang, Lele, Jing Zhao i Guoquan Nie. "Shear Horizontal Surface Waves in a Layered Piezoelectric Nanostructure with Surface Effects". Micromachines 13, nr 10 (11.10.2022): 1711. http://dx.doi.org/10.3390/mi13101711.
Pełny tekst źródłaSakhaee-Pour, A., M. T. Ahmadian i A. Gerami. "Development of an equation to predict radial modulus of elasticity for single-walled carbon nanotubes". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222, nr 6 (1.06.2008): 1109–15. http://dx.doi.org/10.1243/09544062jmes751.
Pełny tekst źródłaArefi, M., MH Zamani i M. Kiani. "Smart electrical and magnetic stability analysis of exponentially graded shear deformable three-layered nanoplate based on nonlocal piezo-magneto-elasticity theory". Journal of Sandwich Structures & Materials 22, nr 3 (28.02.2018): 599–625. http://dx.doi.org/10.1177/1099636218760667.
Pełny tekst źródłaLe, Minh Tai, i Shyh Chour Huang. "Modeling and Analysis the Effect of Helical Carbon Nanotube Morphology on the Mechanical Properties of Nanocomposites Using Hexagonal Representative Volume Element". Applied Mechanics and Materials 577 (lipiec 2014): 3–6. http://dx.doi.org/10.4028/www.scientific.net/amm.577.3.
Pełny tekst źródłaTi, C., J. G. McDaniel, A. Liem, H. Gress, M. Ma, S. Kyoung, O. Svitelskiy i in. "Dynamics of NEMS resonators across dissipation limits". Applied Physics Letters 121, nr 2 (11.07.2022): 023506. http://dx.doi.org/10.1063/5.0100318.
Pełny tekst źródłaKot, Marcin, Tomasz Moskalewicz, Bogdan Wendler, Aleksandra Czyrska-Filemonowicz i Wiesław Rakowski. "Micromechanical and Tribological Properties of Nanocomposite nc-TiC/a-C Coatings". Solid State Phenomena 177 (lipiec 2011): 36–46. http://dx.doi.org/10.4028/www.scientific.net/ssp.177.36.
Pełny tekst źródłaKeivani, M., A. Koochi i M. Abadyan. "A New Bilayer Continuum Model Based on Gurtin-Murdoch and Consistent Couple-Stress Theories for Stability Analysis of Beam-Type Nanotweezers". Journal of Mechanics 33, nr 2 (1.07.2016): 137–46. http://dx.doi.org/10.1017/jmech.2016.45.
Pełny tekst źródłaJavanbakht, Mahdi, Mohammad Sadegh Ghaedi, Emilio Barchiesi i Alessandro Ciallella. "The effect of a pre-existing nanovoid on martensite formation and interface propagation: a phase field study". Mathematics and Mechanics of Solids 26, nr 1 (6.08.2020): 90–109. http://dx.doi.org/10.1177/1081286520948118.
Pełny tekst źródłaYeo, Giselle C., Anna Tarakanova, Clair Baldock, Steven G. Wise, Markus J. Buehler i Anthony S. Weiss. "Subtle balance of tropoelastin molecular shape and flexibility regulates dynamics and hierarchical assembly". Science Advances 2, nr 2 (5.02.2016): e1501145. http://dx.doi.org/10.1126/sciadv.1501145.
Pełny tekst źródłaPolonina, Elena, Olaf Lahayne, Josef Eberhardsteiner i Sergey Leonovich. "Nanoindentation of cement stone samples". E3S Web of Conferences 212 (2020): 02013. http://dx.doi.org/10.1051/e3sconf/202021202013.
Pełny tekst źródłaLopez-Sanchez, Patricia, Ali Assifaoui, Fabrice Cousin, Josefine Moser, Mauricio R. Bonilla i Anna Ström. "Impact of Glucose on the Nanostructure and Mechanical Properties of Calcium-Alginate Hydrogels". Gels 8, nr 2 (22.01.2022): 71. http://dx.doi.org/10.3390/gels8020071.
Pełny tekst źródłaVilaça, Helena, André Carvalho, Tarsila Castro, Elisabete M. S. Castanheira, Loic Hilliou, Ian Hamley, Manuel Melle-Franco, Paula M. T. Ferreira i José A. Martins. "Unveiling the Role of Capping Groups in Naphthalene N-Capped Dehydrodipeptide Hydrogels". Gels 9, nr 6 (6.06.2023): 464. http://dx.doi.org/10.3390/gels9060464.
Pełny tekst źródłaLi, Yan, Mingzhu Yao, Chen Liang, Hui Zhao, Yang Liu i Yifeng Zong. "Hemicellulose and Nano/Microfibrils Improving the Pliability and Hydrophobic Properties of Cellulose Film by Interstitial Filling and Forming Micro/Nanostructure". Polymers 14, nr 7 (23.03.2022): 1297. http://dx.doi.org/10.3390/polym14071297.
Pełny tekst źródłaEmel’yanov, V. I. "The 3D Kuramoto-Sivashinsky Equation for Nonequilibrium Defects Interacting through Self-Consisting Strain and Nanostructuring of Solids". ISRN Nanomaterials 2013 (21.10.2013): 1–6. http://dx.doi.org/10.1155/2013/981616.
Pełny tekst źródłaLi, Cheng, C. W. Lim i Zhong Kui Zhu. "Vibration Analysis of Axially Compressed Nanobeams and its Critical Pressure Using a New Nonlocal Stress Theory". Applied Mechanics and Materials 105-107 (wrzesień 2011): 1788–92. http://dx.doi.org/10.4028/www.scientific.net/amm.105-107.1788.
Pełny tekst źródłaBatyuk, Liliya, i Natalya Kizilova. "Rheological models of biological cells". Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, nr 2 (2022): 37–41. http://dx.doi.org/10.17721/1812-5409.2022/2.4.
Pełny tekst źródłaJankowski, Piotr. "On the Nonlocal Interaction Range for Stability of Nanobeams with Nonlinear Distribution of Material Properties". Acta Mechanica et Automatica 16, nr 2 (18.04.2022): 151–61. http://dx.doi.org/10.2478/ama-2022-0019.
Pełny tekst źródłaGhaedi, Mohammad Sadegh, i Mahdi Javanbakht. "Effect of a thermodynamically consistent interface stress on thermal-induced nanovoid evolution in NiAl". Mathematics and Mechanics of Solids 26, nr 9 (18.01.2021): 1320–36. http://dx.doi.org/10.1177/1081286520986603.
Pełny tekst źródłaM Sobamowo, Gbeminiyi, Olorunfemi O Isaac, Suraju A Oladosu i Rafiu O Kuku. "On the dynamic behaviour of carbon nanotubes conveying fluid resting on elastic foundations in a magnetic-thermal environment: effects of surface energy and initial stress". Aeronautics and Aerospace Open Access Journal 7, nr 1 (4.04.2023): 26–34. http://dx.doi.org/10.15406/aaoaj.2023.07.00167.
Pełny tekst źródłaShilov, М. А., S. V. Fomin, A. A. Britova i P. V. Korolev. "Investigation of Physical and Mechanical Properties of Rubbers Reinforced by Carbon Nanostructured Components". Liquid Crystals and their Application 20, nr 4 (29.12.2020): 93–98. http://dx.doi.org/10.18083/lcappl.2020.4.93.
Pełny tekst źródłaColombo, Luciano, i Stefano Giordano. "Nonlinear elasticity in nanostructured materials". Reports on Progress in Physics 74, nr 11 (14.10.2011): 116501. http://dx.doi.org/10.1088/0034-4885/74/11/116501.
Pełny tekst źródłaDuan, Jingbo, Dapeng Zhang i Wenjie Wang. "Flutter and Divergence Instability of Axially-Moving Nanoplates Resting on a Viscoelastic Foundation". Applied Sciences 9, nr 6 (15.03.2019): 1097. http://dx.doi.org/10.3390/app9061097.
Pełny tekst źródłaSherstyukova, E. A., V. A. Inozemtsev, A. P. Kozlov, O. E. Gudkova i V. A. Sergunova. "Atomic force microscopy in the assessment of erythrocyte membrane mechanical properties with exposure to various physicochemical agents". Almanac of Clinical Medicine 49, nr 6 (8.12.2021): 427–34. http://dx.doi.org/10.18786/2072-0505-2021-49-059.
Pełny tekst źródłaMizubayashi, H., K. Fujita, K. Fujiwara i H. Tanimoto. "Elasticity Study of Nanostructured Copper Thin Films". Journal of Metastable and Nanocrystalline Materials 24-25 (wrzesień 2005): 61–64. http://dx.doi.org/10.4028/www.scientific.net/jmnm.24-25.61.
Pełny tekst źródłaSambani, Kyriaki, Stylianos Vasileios Kontomaris i Dido Yova. "Atomic Force Microscopy Imaging of Elastin Nanofibers Self-Assembly". Materials 16, nr 12 (11.06.2023): 4313. http://dx.doi.org/10.3390/ma16124313.
Pełny tekst źródłaNaskar, Supriyo, i Prabal K. Maiti. "Mechanical properties of DNA and DNA nanostructures: comparison of atomistic, Martini and oxDNA models". Journal of Materials Chemistry B 9, nr 25 (2021): 5102–13. http://dx.doi.org/10.1039/d0tb02970j.
Pełny tekst źródłaBull, S. J. "Nanomechanics of Coatings for Electronic and Optical Applications". Solid State Phenomena 159 (styczeń 2010): 11–18. http://dx.doi.org/10.4028/www.scientific.net/ssp.159.11.
Pełny tekst źródłaBarretta, Raffaele, Francesco Marotti de Sciarra i Marzia Sara Vaccaro. "Nonlocal Elasticity for Nanostructures: A Review of Recent Achievements". Encyclopedia 3, nr 1 (27.02.2023): 279–310. http://dx.doi.org/10.3390/encyclopedia3010018.
Pełny tekst źródłaBelyaev, Leonid V., Aleksey V. Zhdanov i Valentin V. Morozov. "Application of the Nanostructured Carbon Coatings for Improvement of Functional Properties of Medical Polyurethanes". Advanced Materials Research 1088 (luty 2015): 3–7. http://dx.doi.org/10.4028/www.scientific.net/amr.1088.3.
Pełny tekst źródłaLi, Cheng, i Wei Guo Huang. "Nonlocal Size Dependence of a Softness Nanobeam with Large Axial Tension under Various Boundary Conditions". Advanced Materials Research 490-495 (marzec 2012): 3226–30. http://dx.doi.org/10.4028/www.scientific.net/amr.490-495.3226.
Pełny tekst źródłaDolbin, Igor V., Gusein M. Magomedov i Georgii V. Kozlov. "The Influence of Phases Division Surface in Nanocomposites Polymer/2D-Nanofiller on their Reinforcement Degree - The Percolation Model". Key Engineering Materials 869 (październik 2020): 516–23. http://dx.doi.org/10.4028/www.scientific.net/kem.869.516.
Pełny tekst źródłaRoca, Antoni, Jordi Llumà, Jordi Jorba i Núria Llorca-Isern. "Measurement of Elastic Constants on Nanostructured Iron and Copper". Materials Science Forum 638-642 (styczeń 2010): 1772–77. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.1772.
Pełny tekst źródłaPetryk, Ivan, Yuriy Lutsiuk i Valeriy Kramar. "Frequency spectrum and group velocities of acoustic phonons in PbI2 nanofilms". Physics and Chemistry of Solid State 23, nr 3 (24.08.2022): 478–83. http://dx.doi.org/10.15330/pcss.23.3.478-483.
Pełny tekst źródłaKabe, Yoshio, Hisanori Tanimoto i Hiroshi Mizubayashi. "Elasticity Study of Nanostructured Al and Al-Si(Cu) Films". MATERIALS TRANSACTIONS 45, nr 1 (2004): 119–24. http://dx.doi.org/10.2320/matertrans.45.119.
Pełny tekst źródłaDi Lorenzo, F., i S. Seiffert. "Nanostructural heterogeneity in polymer networks and gels". Polymer Chemistry 6, nr 31 (2015): 5515–28. http://dx.doi.org/10.1039/c4py01677g.
Pełny tekst źródłaEbrahimi, Farzad, i Mohammad Reza Barati. "Modeling of smart magnetically affected flexoelectric/piezoelectric nanostructures incorporating surface effects". Nanomaterials and Nanotechnology 7 (1.01.2017): 184798041771310. http://dx.doi.org/10.1177/1847980417713106.
Pełny tekst źródłaKhalikov, R. M., O. V. Ivanova, L. N. Korotkova i D. A. Sinitsin. "Supramolecular impactmechanism of polycarboxylate superplasticizers on controlled hardening building nanocomposites". Nanotechnologies in Construction A Scientific Internet-Journal 12, nr 5 (30.10.2020): 250–55. http://dx.doi.org/10.15828/2075-8545-2020-12-5-250-255.
Pełny tekst źródła