Artykuły w czasopismach na temat „EFFICIENT RECOMMENDER SYSTEMS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „EFFICIENT RECOMMENDER SYSTEMS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ribeiro, Marco Tulio, Nivio Ziviani, Edleno Silva De Moura, Itamar Hata, Anisio Lacerda i Adriano Veloso. "Multiobjective Pareto-Efficient Approaches for Recommender Systems". ACM Transactions on Intelligent Systems and Technology 5, nr 4 (23.01.2015): 1–20. http://dx.doi.org/10.1145/2629350.
Pełny tekst źródłaHuang, Zhen Hua, Dong Wang i Sheng Li Sun. "Efficient Mining of Skyrank Items in Recommender Systems". Advanced Materials Research 472-475 (luty 2012): 3450–54. http://dx.doi.org/10.4028/www.scientific.net/amr.472-475.3450.
Pełny tekst źródłaHawashin, Bilal, Shadi Alzubi, Tarek Kanan i Ayman Mansour. "An efficient semantic recommender method forArabic text". Electronic Library 37, nr 2 (1.04.2019): 263–80. http://dx.doi.org/10.1108/el-12-2018-0245.
Pełny tekst źródłaPasdar, Amirmohammad, Young Choon Lee, Tahereh Hassanzadeh i Khaled Almi’ani. "Resource Recommender for Cloud-Edge Engineering". Information 12, nr 6 (25.05.2021): 224. http://dx.doi.org/10.3390/info12060224.
Pełny tekst źródłaJabbar, Muhammad, Qaisar Javaid, Muhammad Arif, Asim Munir i Ali Javed. "An Efficient and Intelligent Recommender System for Mobile Platform". October 2018 37, nr 4 (1.10.2018): 463–80. http://dx.doi.org/10.22581/muet1982.1804.02.
Pełny tekst źródłaRadlinski, Filip, Craig Boutilier, Deepak Ramachandran i Ivan Vendrov. "Subjective Attributes in Conversational Recommendation Systems: Challenges and Opportunities". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 11 (28.06.2022): 12287–93. http://dx.doi.org/10.1609/aaai.v36i11.21492.
Pełny tekst źródłaLuo, Chenhong, Yong Wang, Bo Li, Hanyang Liu, Pengyu Wang i Leo Yu Zhang. "An Efficient Approach to Manage Natural Noises in Recommender Systems". Algorithms 16, nr 5 (27.04.2023): 228. http://dx.doi.org/10.3390/a16050228.
Pełny tekst źródłaCui, Zeyu, Feng Yu, Shu Wu, Qiang Liu i Liang Wang. "Disentangled Item Representation for Recommender Systems". ACM Transactions on Intelligent Systems and Technology 12, nr 2 (marzec 2021): 1–20. http://dx.doi.org/10.1145/3445811.
Pełny tekst źródłaVaidhehi, V., i R. Suchithra. "A Systematic Review of Recommender Systems in Education". International Journal of Engineering & Technology 7, nr 3.4 (25.06.2018): 188. http://dx.doi.org/10.14419/ijet.v7i3.4.16771.
Pełny tekst źródłaHawashin, Bilal, Darah Aqel, Shadi Alzubi i Mohammad Elbes. "Improving Recommender Systems Using Co-Appearing and Semantically Correlated User Interests". Recent Advances in Computer Science and Communications 13, nr 2 (3.06.2020): 240–47. http://dx.doi.org/10.2174/2213275912666190115162311.
Pełny tekst źródłaTorres, Nicolás, i Marcelo Mendoza. "Clustering Approaches for Top-k Recommender Systems". International Journal on Artificial Intelligence Tools 28, nr 05 (sierpień 2019): 1950019. http://dx.doi.org/10.1142/s0218213019500192.
Pełny tekst źródłaThanh, Tran Thi. "A STUDY ON MOVIE RECOMMENDER SYSTEMS BASED ON WORDPRESS PLATFORM". International Journal of Engineering Technologies and Management Research 7, nr 6 (3.07.2020): 152–55. http://dx.doi.org/10.29121/ijetmr.v7.i6.2020.709.
Pełny tekst źródłaBen-Porat, Omer, Lee Cohen, Liu Leqi, Zachary C. Lipton i Yishay Mansour. "Modeling Attrition in Recommender Systems with Departing Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 6 (28.06.2022): 6072–79. http://dx.doi.org/10.1609/aaai.v36i6.20554.
Pełny tekst źródłaLin, Dongding, Jian Wang i Wenjie Li. "COLA: Improving Conversational Recommender Systems by Collaborative Augmentation". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 4 (26.06.2023): 4462–70. http://dx.doi.org/10.1609/aaai.v37i4.25567.
Pełny tekst źródłaLuo, Xin, Mengchu Zhou, Shuai Li, Yunni Xia, Zhuhong You, Qingsheng Zhu i Hareton Leung. "An Efficient Second-Order Approach to Factorize Sparse Matrices in Recommender Systems". IEEE Transactions on Industrial Informatics 11, nr 4 (sierpień 2015): 946–56. http://dx.doi.org/10.1109/tii.2015.2443723.
Pełny tekst źródłaIndira, K., i M. K. Kavithadevi. "Efficient Machine Learning Model for Movie Recommender Systems Using Multi-Cloud Environment". Mobile Networks and Applications 24, nr 6 (16.10.2019): 1872–82. http://dx.doi.org/10.1007/s11036-019-01387-4.
Pełny tekst źródłaBoudaa, Boudjemaa, Djamila Figuir, Slimane Hammoudi i Sidi mohamed Benslimane. "DATAtourist". International Journal of Decision Support System Technology 13, nr 2 (kwiecień 2021): 62–84. http://dx.doi.org/10.4018/ijdsst.2021040104.
Pełny tekst źródłaGhosh, Aritra, Saayan Mitra i Andrew Lan. "DiPS: Differentiable Policy for Sketching in Recommender Systems". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 6 (28.06.2022): 6703–12. http://dx.doi.org/10.1609/aaai.v36i6.20625.
Pełny tekst źródłaBatra, Priya, Anukriti Singh i T. S. Mahesh. "Efficient Characterization of Quantum Evolutions via a Recommender System". Quantum 5 (6.12.2021): 598. http://dx.doi.org/10.22331/q-2021-12-06-598.
Pełny tekst źródłaSarwat, Mohamed, Justin J. Levandoski, Ahmed Eldawy i Mohamed F. Mokbel. "LARS*: An Efficient and Scalable Location-Aware Recommender System". IEEE Transactions on Knowledge and Data Engineering 26, nr 6 (czerwiec 2014): 1384–99. http://dx.doi.org/10.1109/tkde.2013.29.
Pełny tekst źródłaWang, Zehong, Jianhua Liu, Shigen Shen i Minglu Li. "Restaurant Recommendation in Vehicle Context Based on Prediction of Traffic Conditions". International Journal of Pattern Recognition and Artificial Intelligence 35, nr 10 (sierpień 2021): 2159044. http://dx.doi.org/10.1142/s0218001421590448.
Pełny tekst źródłaJeong, Hanjo, i Kyung Jin CHA. "An Efficient MapReduce-Based Parallel Processing Framework for User-Based Collaborative Filtering". Symmetry 11, nr 6 (3.06.2019): 748. http://dx.doi.org/10.3390/sym11060748.
Pełny tekst źródłaStarke, Alain, Martijn Willemsen i Chris Snijders. "Promoting Energy-Efficient Behavior by Depicting Social Norms in a Recommender Interface". ACM Transactions on Interactive Intelligent Systems 11, nr 3-4 (31.12.2021): 1–32. http://dx.doi.org/10.1145/3460005.
Pełny tekst źródłaDo, Virginie, Sam Corbett-Davies, Jamal Atif i Nicolas Usunier. "Online Certification of Preference-Based Fairness for Personalized Recommender Systems". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 6 (28.06.2022): 6532–40. http://dx.doi.org/10.1609/aaai.v36i6.20606.
Pełny tekst źródłaBouni, Mohamed, Badr Hssina, Khadija Douzi i Samira Douzi. "Towards an Efficient Recommender Systems in Smart Agriculture: A deep reinforcement learning approach". Procedia Computer Science 203 (2022): 825–30. http://dx.doi.org/10.1016/j.procs.2022.07.124.
Pełny tekst źródłaWang, Pengyu, Yong Wang, Leo Yu Zhang i Hong Zhu. "An effective and efficient fuzzy approach for managing natural noise in recommender systems". Information Sciences 570 (wrzesień 2021): 623–37. http://dx.doi.org/10.1016/j.ins.2021.05.002.
Pełny tekst źródłaDrif, Ahlem, i Hocine Cherifi. "MIGAN: Mutual-Interaction Graph Attention Network for Collaborative Filtering". Entropy 24, nr 8 (5.08.2022): 1084. http://dx.doi.org/10.3390/e24081084.
Pełny tekst źródłaLiu, Lewis, i Kun Zhao. "Asynchronous Stochastic Gradient Descent for Extreme-Scale Recommender Systems". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 1 (18.05.2021): 328–35. http://dx.doi.org/10.1609/aaai.v35i1.16108.
Pełny tekst źródłaChicaiza, Janneth, i Priscila Valdiviezo-Diaz. "A Comprehensive Survey of Knowledge Graph-Based Recommender Systems: Technologies, Development, and Contributions". Information 12, nr 6 (28.05.2021): 232. http://dx.doi.org/10.3390/info12060232.
Pełny tekst źródłaStitini, O., S. Kaloun i O. Bencharef. "INVESTIGATING DIFFERENT SIMILARITY METRICS USED IN VARIOUS RECOMMENDER SYSTEMS TYPES: SCENARIO CASES". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-4/W3-2022 (2.12.2022): 187–93. http://dx.doi.org/10.5194/isprs-archives-xlviii-4-w3-2022-187-2022.
Pełny tekst źródłaYan, Surong, Kwei-Jay Lin, Xiaolin Zheng, Wenyu Zhang i Xiaoqing Feng. "An Approach for Building Efficient and Accurate Social Recommender Systems Using Individual Relationship Networks". IEEE Transactions on Knowledge and Data Engineering 29, nr 10 (1.10.2017): 2086–99. http://dx.doi.org/10.1109/tkde.2017.2717984.
Pełny tekst źródłaXin Luo, Mengchu Zhou, Yunni Xia i Qingsheng Zhu. "An Efficient Non-Negative Matrix-Factorization-Based Approach to Collaborative Filtering for Recommender Systems". IEEE Transactions on Industrial Informatics 10, nr 2 (maj 2014): 1273–84. http://dx.doi.org/10.1109/tii.2014.2308433.
Pełny tekst źródłaIbrahim, Muhammad, i Imran Bajwa. "Design and Application of a Multi-Variant Expert System Using Apache Hadoop Framework". Sustainability 10, nr 11 (19.11.2018): 4280. http://dx.doi.org/10.3390/su10114280.
Pełny tekst źródłaMaazouzi, Faiz, Hafed Zarzour i Yaser Jararweh. "An Effective Recommender System Based on Clustering Technique for TED Talks". International Journal of Information Technology and Web Engineering 15, nr 1 (styczeń 2020): 35–51. http://dx.doi.org/10.4018/ijitwe.2020010103.
Pełny tekst źródłaLiu, Hanwen, Huaizhen Kou, Chao Yan i Lianyong Qi. "Keywords-Driven and Popularity-Aware Paper Recommendation Based on Undirected Paper Citation Graph". Complexity 2020 (24.04.2020): 1–15. http://dx.doi.org/10.1155/2020/2085638.
Pełny tekst źródłanarayan, subhashini. "Multilayer Perceptron with Auto encoder enabled Deep Learning model for Recommender Systems". Future Computing and Informatics Journal 5, nr 2 (30.12.2020): 96–116. http://dx.doi.org/10.54623/fue.fcij.5.2.3.
Pełny tekst źródłaLiu, Hai, Chao Zheng, Duantengchuan Li, Xiaoxuan Shen, Ke Lin, Jiazhang Wang, Zhen Zhang, Zhaoli Zhang i Neal N. Xiong. "EDMF: Efficient Deep Matrix Factorization With Review Feature Learning for Industrial Recommender System". IEEE Transactions on Industrial Informatics 18, nr 7 (lipiec 2022): 4361–71. http://dx.doi.org/10.1109/tii.2021.3128240.
Pełny tekst źródłaChen, Jiawei, Chengquan Jiang, Can Wang, Sheng Zhou, Yan Feng, Chun Chen, Martin Ester i Xiangnan He. "CoSam: An Efficient Collaborative Adaptive Sampler for Recommendation". ACM Transactions on Information Systems 39, nr 3 (22.05.2021): 1–24. http://dx.doi.org/10.1145/3450289.
Pełny tekst źródłaNadimi-Shahraki, Mohammad-Hossein, i Mozhde Bahadorpour. "Cold-start Problem in Collaborative Recommender Systems: Efficient Methods Based on Ask-to-rate Technique". Journal of Computing and Information Technology 22, nr 2 (2014): 105. http://dx.doi.org/10.2498/cit.1002223.
Pełny tekst źródłaWei, Lingtao. "Communication Efficient Federated Personalized Recommendation". Frontiers in Computing and Intelligent Systems 2, nr 3 (13.02.2023): 63–67. http://dx.doi.org/10.54097/fcis.v2i3.5214.
Pełny tekst źródłaRrmoku, Korab, Besnik Selimi i Lule Ahmedi. "Provenance and social network analysis for recommender systems: a literature review". International Journal of Electrical and Computer Engineering (IJECE) 12, nr 5 (1.10.2022): 5383. http://dx.doi.org/10.11591/ijece.v12i5.pp5383-5392.
Pełny tekst źródłaCho, Gyungah, Pyoung-seop Shim i Jaekwang Kim. "Explainable B2B Recommender System for Potential Customer Prediction Using KGAT". Electronics 12, nr 17 (22.08.2023): 3536. http://dx.doi.org/10.3390/electronics12173536.
Pełny tekst źródłaKhan, Zeshan Aslam, Naveed Ishtiaq Chaudhary, Waqar Ali Abbasi, Sai Ho Ling i Muhammad Asif Zahoor Raja. "Design of Confidence-Integrated Denoising Auto-Encoder for Personalized Top-N Recommender Systems". Mathematics 11, nr 3 (2.02.2023): 761. http://dx.doi.org/10.3390/math11030761.
Pełny tekst źródłaIvanova, M. I. "Recommender systems in the public administration: methodological overview and conceptualization". Journal of Law and Administration 17, nr 2 (16.07.2021): 61–69. http://dx.doi.org/10.24833/2073-8420-2021-2-59-61-69.
Pełny tekst źródłaAgarwal, Vipul, i Vijayalakshmi A. "Recommender system for surplus stock clearance". International Journal of Electrical and Computer Engineering (IJECE) 9, nr 5 (1.10.2019): 3813. http://dx.doi.org/10.11591/ijece.v9i5.pp3813-3821.
Pełny tekst źródłaWang, Xixian, Xiaoming Wang, Binrui Huang, Mingzhan Dai i Jianwei Li. "Efficient Personalized Recommendation Based on Federated Learning with Similarity Ciphertext Calculation". Security and Communication Networks 2022 (16.09.2022): 1–15. http://dx.doi.org/10.1155/2022/8607234.
Pełny tekst źródłaLe, Quang-Hung, Son-Lam Vu, Thi-Kim-Phuong Nguyen i Thi-Xinh Le. "A State-of-the-Art Survey on Context-Aware Recommender Systems and Applications". International Journal of Knowledge and Systems Science 12, nr 3 (lipiec 2021): 1–20. http://dx.doi.org/10.4018/ijkss.2021070101.
Pełny tekst źródłaEt. al., Geluvaraj B,. "AMatrix factorization technique using parameter tuning of singular value decomposition for Recommender Systems". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, nr 2 (10.04.2021): 3313–19. http://dx.doi.org/10.17762/turcomat.v12i2.2390.
Pełny tekst źródłaNittu, Goutham, Singh Karan, Banda Latha, Sharma Purushottam, Verma Chaman i Goyal S. B. "ShAD-SEF: An Efficient Model for Shilling Attack Detection using Stacking Ensemble Framework in Recommender Systems". International Journal of Performability Engineering 19, nr 5 (2023): 291. http://dx.doi.org/10.23940/ijpe.23.05.p1.291302.
Pełny tekst źródłaHu, Kerui, Lemiao Qiu, Shuyou Zhang, Zili Wang, Naiyu Fang i Huifang Zhou. "A novel neighbor selection scheme based on dynamic evaluation towards recommender systems". Science Progress 106, nr 2 (kwiecień 2023): 003685042311800. http://dx.doi.org/10.1177/00368504231180090.
Pełny tekst źródła