Gotowa bibliografia na temat „EEJ electric field”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „EEJ electric field”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "EEJ electric field"
TERAKURA, TAKUMA, KEI TAKANO, TAKANORI YASUOKA, SHIGEKAZU MORI, OSAMU HOSOKAWA, TAKASHI IWABUCHI, TAKASHI CHIGIRI i SHIN YAMADA. "Transient Electric Field Analysis in Consideration of the Electric Field Dependence of Resistivity in the Converter Transformer". Electrical Engineering in Japan 198, nr 1 (13.09.2016): 3–11. http://dx.doi.org/10.1002/eej.22878.
Pełny tekst źródłaSato, Susumu, i Masahito Kushima. "Applications of nematic liquid crystals to electric-field sensors". Electrical Engineering in Japan 110, nr 7 (1990): 74–81. http://dx.doi.org/10.1002/eej.4391100708.
Pełny tekst źródłaTashiro, Shinichi, i Masao Endo. "Electric field of surface discharge inception by electrification charge". Electrical Engineering in Japan 145, nr 2 (24.07.2003): 1–9. http://dx.doi.org/10.1002/eej.10192.
Pełny tekst źródłaHamada, Shoji, i Tadasu Takuma. "Electric field calculation in composite dielectrics by surface charge method based on electric flux continuity condition". Electrical Engineering in Japan 138, nr 4 (18.01.2002): 10–17. http://dx.doi.org/10.1002/eej.1133.
Pełny tekst źródłaHamada, Shoji, Osamu Yamamoto i Tetsuo Kobayashi. "Analysis of electric field induced by ELF magnetic field utilizing generalized equivalent multipole-moment method". Electrical Engineering in Japan 156, nr 2 (2006): 1–14. http://dx.doi.org/10.1002/eej.20342.
Pełny tekst źródłaHamada, Shoji, i Tadasu Takuma. "Electric field calculation in composite dielectrics by curved surface charge method based on electric flux continuity condition". Electrical Engineering in Japan 141, nr 3 (21.08.2002): 9–16. http://dx.doi.org/10.1002/eej.2017.
Pełny tekst źródłaDenardini, C. M., M. A. Abdu, E. R. de Paula, C. M. Wrasse i J. H. A. Sobral. "VHF radar observations of the dip equatorial E-region during sunset in the Brazilian sector". Annales Geophysicae 24, nr 6 (3.07.2006): 1617–23. http://dx.doi.org/10.5194/angeo-24-1617-2006.
Pełny tekst źródłaNakano, Mitsuaki. "DC conduction associated with electric field-induced motion in mineral oils". Electrical Engineering in Japan 114, nr 4 (1994): 1–12. http://dx.doi.org/10.1002/eej.4391140401.
Pełny tekst źródłaYamazaki, Keita, Kazuo Kato, Koichiro Kobayashi, Ken Kawamata, Akiyoshi Saga, Noboru Goto, Shigeki Minegishi i Akira Haga. "Environmental low-frequency magnetic field due to direct-current electric railcars". Electrical Engineering in Japan 137, nr 3 (30.11.2001): 10–21. http://dx.doi.org/10.1002/eej.1090.
Pełny tekst źródłaKawamoto, Tadashi, Tadasu Takuma, Hisashi Goshima, Hiroyuki Shinkai i Hideo Fujinami. "Triple-junction effect and its electric field relaxation in three dielectrics". Electrical Engineering in Japan 167, nr 1 (15.04.2009): 1–8. http://dx.doi.org/10.1002/eej.20670.
Pełny tekst źródłaRozprawy doktorskie na temat "EEJ electric field"
Koulouri, Alexandra. "Reconstruction of electric fields and source distributions in EEG brain imaging". Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/25759.
Pełny tekst źródłaYurtkolesi, Mustafa. "Imaging Electrical Conductivity Distribution Of The Human Head Using Evoked Fields And Potentials". Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609828/index.pdf.
Pełny tekst źródłaΓιαπαλάκη, Σοφία. "Μελέτη προτύπων ιατρικής φυσικής μέσω της επίλυσης προβλημάτων μαθηματικής νευροφυσιολογίας". Thesis, 2006. http://nemertes.lis.upatras.gr/jspui/handle/10889/1473.
Pełny tekst źródłaElectroenchephalography (EEG) and Magnetoenchephalophy (MEG) are common non invansive methods for studying the function of the human brain. Considering that the data of the generated electric potential (Electroencephalogram) and the magnetic field (Magnetoenchephalogram), takes place on or in the surrounding the head, the entire head, including the skin, the bones, the cerebrospinal fluid and the cerebral, regions which are characterizing by different electric conductivity are including. For this model, the direct Bioelectromagnetism problem is solved in both spherical and ellipsoidal geometry. Specifically, the leading terms of the electric potential in the exterior of the conductor and everywhere in the interior, as well as the leading quadrupolic term of the multipole expansion of the exterior magnetic induction field in the ellipsoidal geometry, are obtained. The reduction of the the ellipsoidal results to the corresponding spherical case, which has brought up useful conclusions concerning these two geometrical models, is also presented. The direct EEG problem is described, for the case where the entire cerebral is considered as a spherical conductor, which surrounds a fluid spherical region of different conductivity. When the two spherical regions are concentric, the problem is solved with the spherical geometry, but when these are eccentric the problem is solved with the bispherical geometry. Finally, the exact and complete analytic solution for the forward EEG problem is produced by the Image Theory for the homogeneous spherical conductor and is elaborated graphically. In particular, some electric potential distributions are produced on the surface of the spherical brain, where the equipotential curves are represented by circles. Considering these distributions, a parametric analysis of the position and the orientation o the moment dipole is accomplished for the current dipole that has considered in this thesis. Consequently, when the source is near the surface, the orientation of the moment is directed vertically to the zero equipotential circle to the increase potential, since the position vector of the source tends to become vertical to the maximum equipotential curves. The existence of special position and orientation of the source, for which the contribution in the external magnetic field is zero - and for the spherical case, where the position and the orientation of the sources are parallel - corresponds to parallel equipotential curves.
Książki na temat "EEJ electric field"
Ramesh, Srinivasan, red. Electric fields of the brain: The neurophysics of EEG. Wyd. 2. New York: Oxford University Press, 2006.
Znajdź pełny tekst źródłaMichel, Christoph M., i Bin He. EEG Mapping and Source Imaging. Redaktorzy Donald L. Schomer i Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0045.
Pełny tekst źródłaReed, Sean, Sonia Jego i Antoine Adamantidis. Electroencephalography and Local Field Potentials in Animals. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199939800.003.0007.
Pełny tekst źródłaWadman, Wytse J., i Fernando H. Lopes da Silva. Biophysical Aspects of EEG and MEG Generation. Redaktorzy Donald L. Schomer i Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0004.
Pełny tekst źródłaNunez, Paul L., i Ramesh Srinivasan. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, USA, 2005.
Znajdź pełny tekst źródłaAmzica, Florin, i Fernando H. Lopes da Silva. Cellular Substrates of Brain Rhythms. Redaktorzy Donald L. Schomer i Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0002.
Pełny tekst źródłaSchomer, Donald L., i Fernando H. Lopes da Silva, red. Niedermeyer's Electroencephalography. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.001.0001.
Pełny tekst źródłaCzęści książek na temat "EEJ electric field"
Jäntti, Ville, Narayan Puthanmadam Subramaniyam, Kotoe Kamata, Tuomo Ylinen, Arvi Yli-Hankala, Pasi Kauppinen i Outi Väisänen. "Electric field of EEG during anesthesia". W EMBEC & NBC 2017, 354–57. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5122-7_89.
Pełny tekst źródłaBhattacharya, Sitangshu, i Kamakhya Prasad Ghatak. "The EEM in the Presence of Intense Electric Field". W Effective Electron Mass in Low-Dimensional Semiconductors, 319–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31248-9_7.
Pełny tekst źródłaHari, Riitta, i Aina Puce. "Introduction". W MEG - EEG Primer, redaktorzy Riitta Hari i Aina Puce, 3—C1P47. Wyd. 2. Oxford University PressNew York, 2023. http://dx.doi.org/10.1093/med/9780197542187.003.0001.
Pełny tekst źródłaHari, Riitta, i Aina Puce. "Introduction". W MEG-EEG Primer, redaktorzy Riitta Hari i Aina Puce, 3–12. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190497774.003.0001.
Pełny tekst źródłaHari, Riitta, i Aina Puce. "Basic Physics and Physiology of MEG and EEG". W MEG-EEG Primer, redaktorzy Riitta Hari i Aina Puce, 25–37. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190497774.003.0003.
Pełny tekst źródłaNunez, Paul L., i Ramesh Srinivasan. "Fallacies in EEG". W Electric Fields of the Brain, 56–98. Oxford University Press, 2006. http://dx.doi.org/10.1093/acprof:oso/9780195050387.003.0002.
Pełny tekst źródłaNunez, Paul L., i Ramesh Srinivasan. "High-Resolution EEG". W Electric Fields of the Brain, 313–52. Oxford University Press, 2006. http://dx.doi.org/10.1093/acprof:oso/9780195050387.003.0008.
Pełny tekst źródłaNunez, Paul L., i Ramesh Srinivasan. "The Physics–EEG Interface". W Electric Fields of the Brain, 3–55. Oxford University Press, 2006. http://dx.doi.org/10.1093/acprof:oso/9780195050387.003.0001.
Pełny tekst źródłaNunez, Paul L., i Ramesh Srinivasan. "Measures of EEG Dynamic Properties". W Electric Fields of the Brain, 353–431. Oxford University Press, 2006. http://dx.doi.org/10.1093/acprof:oso/9780195050387.003.0009.
Pełny tekst źródłaNunez, Paul L., i Ramesh Srinivasan. "Spatial-Temporal Properties of EEG". W Electric Fields of the Brain, 432–85. Oxford University Press, 2006. http://dx.doi.org/10.1093/acprof:oso/9780195050387.003.0010.
Pełny tekst źródłaStreszczenia konferencji na temat "EEJ electric field"
Sirakov, Kiril. "Modelling and Analysis of the Electric Field in a Chamber for Pre-Sowing Electrical Treatment of Seeds of Field Crops". W 2022 8th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE). IEEE, 2022. http://dx.doi.org/10.1109/eeae53789.2022.9831312.
Pełny tekst źródłaBeecher, Scott F., i Bret G. Lynch. "Loading Software to Engine Controls in the Field". W ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-016.
Pełny tekst źródłaWu, Jin-bo, Quan Hong, Hui Li, Si-yuan Guo, Hao Xu, Wei-jun Zhu i Fan Ouyang. "Study on Method for Field Secondary Signal Simulation of Optical Current Transformer". W Proceedings of the 2nd International Conference on Electrical and Electronic Engineering (EEE 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/eee-19.2019.3.
Pełny tekst źródłaChen, Xiyou, Jianhui Chen, Guanlin Li, Xianmin Mu i Chen Qi. "Electric-field-coupled single-wire power transmission — analytical model and experimental demonstration". W 2017 International Symposium on Power Electronics (Ee). IEEE, 2017. http://dx.doi.org/10.1109/pee.2017.8171661.
Pełny tekst źródłaIapascurta, Victor, i Ion Fiodorov. "Kolmogorov-Chaitin Algorithmic Complexity for EEG Analysis". W 12th International Conference on Electronics, Communications and Computing. Technical University of Moldova, 2022. http://dx.doi.org/10.52326/ic-ecco.2022/cs.14.
Pełny tekst źródłaRaicevic, N. B., D. S. Tasic, S. S. Ilic i S. R. Aleksic. "New EEM/BEM hybrid method for electric field calculation in cable terminations". W IEEE EUROCON 2011 - International Conference on Computer as a Tool. IEEE, 2011. http://dx.doi.org/10.1109/eurocon.2011.5929214.
Pełny tekst źródłaKnox, W. H., J. E. Henry, B. Tell, K. D. Li, D. A. B. Miller i D. S. Chemla. "Femtosecond Excitonic Electroabsorption Sampling". W Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/peo.1989.ds264.
Pełny tekst źródłaSzajerman, Dominik, i Piotr Napieralski. "Joint analysis of simultaneous EEG and eye tracking data for video picture". W 2017 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF). IEEE, 2017. http://dx.doi.org/10.1109/isef.2017.8090693.
Pełny tekst źródłaSun, Shengkun, Yuhan Liu i Yunfeng Jia. "Effect of Equipment Layout on Electromagnetic Field Distribution in Engine Room". W 2019 International Conference on Electronic Engineering and Informatics (EEI). IEEE, 2019. http://dx.doi.org/10.1109/eei48997.2019.00012.
Pełny tekst źródłaAlrajeh, N. A., K. W. Divine, T. P. Sullivan i N. M. Bukhari. "Controlling a Valve Actuator and the Flow of Fluids with Interpreted Brain Signals". W SPE/IADC Middle East Drilling Technology Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/214559-ms.
Pełny tekst źródła