Gotowa bibliografia na temat „EEG SINGLE-CHANNEL”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „EEG SINGLE-CHANNEL”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "EEG SINGLE-CHANNEL"
Shellhaas, Renée A., i Robert R. Clancy. "Characterization of neonatal seizures by conventional EEG and single-channel EEG". Clinical Neurophysiology 118, nr 10 (październik 2007): 2156–61. http://dx.doi.org/10.1016/j.clinph.2007.06.061.
Pełny tekst źródłaChavez, M., F. Grosselin, A. Bussalb, F. De Vico Fallani i X. Navarro-Sune. "Surrogate-Based Artifact Removal From Single-Channel EEG". IEEE Transactions on Neural Systems and Rehabilitation Engineering 26, nr 3 (marzec 2018): 540–50. http://dx.doi.org/10.1109/tnsre.2018.2794184.
Pełny tekst źródłaBachmann, Maie, Jaanus Lass i Hiie Hinrikus. "Single channel EEG analysis for detection of depression". Biomedical Signal Processing and Control 31 (styczeń 2017): 391–97. http://dx.doi.org/10.1016/j.bspc.2016.09.010.
Pełny tekst źródłaGrosselin, Fanny, Xavier Navarro-Sune, Alessia Vozzi, Katerina Pandremmenou, Fabrizio De Vico Fallani, Yohan Attal i Mario Chavez. "Quality Assessment of Single-Channel EEG for Wearable Devices". Sensors 19, nr 3 (31.01.2019): 601. http://dx.doi.org/10.3390/s19030601.
Pełny tekst źródłaWan, Zhijiang, Hao Zhang, Jiajin Huang, Haiyan Zhou, Jie Yang i Ning Zhong. "Single-Channel EEG-Based Machine Learning Method for Prescreening Major Depressive Disorder". International Journal of Information Technology & Decision Making 18, nr 05 (wrzesień 2019): 1579–603. http://dx.doi.org/10.1142/s0219622019500342.
Pełny tekst źródłaZhu, Guohun, Tong Qiu, Yi Ding, Shang Gao, Nan Zhao, Feng Liu, Xujuan Zhou i Raj Gururajan. "Detecting Depression Using Single-Channel EEG and Graph Methods". Mathematics 10, nr 22 (8.11.2022): 4177. http://dx.doi.org/10.3390/math10224177.
Pełny tekst źródłaNakayama, Minoru, i Hiroshi Abe. "Single-trial Classification of Viewed Characters using Single-channel EEG Waveforms". International Journal for Infonomics 3, nr 4 (1.12.2010): 392–400. http://dx.doi.org/10.20533/iji.1742.4712.2010.0042.
Pełny tekst źródłaLiu, Changrui, i Chaozhu Zhang. "Remove Artifacts from a Single-Channel EEG Based on VMD and SOBI". Sensors 22, nr 17 (4.09.2022): 6698. http://dx.doi.org/10.3390/s22176698.
Pełny tekst źródłaQu, Wei, Chien-Hui Kao, Hong Hong, Zheru Chi, Ron Grunstein, Christopher Gordon i Zhiyong Wang. "Single-channel EEG based insomnia detection with domain adaptation". Computers in Biology and Medicine 139 (grudzień 2021): 104989. http://dx.doi.org/10.1016/j.compbiomed.2021.104989.
Pełny tekst źródłaJohnstone, Stuart J., Russell Blackman i Jason M. Bruggemann. "EEG From a Single-Channel Dry-Sensor Recording Device". Clinical EEG and Neuroscience 43, nr 2 (27.03.2012): 112–20. http://dx.doi.org/10.1177/1550059411435857.
Pełny tekst źródłaRozprawy doktorskie na temat "EEG SINGLE-CHANNEL"
Marwan, Abed Thorir. "Preamplifier Design for Active Electrodes in Single-Channel EEG Applications". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232061.
Pełny tekst źródłaImplementeringen av bärbara elektroencefalografisystem (EEG) har varit känd för att vara komplex. Vid rörelse påverkas ofta reliabiliteten av de inspelade EEGsignalerna av rörelseartefakter samt av att tiden och det arbete som krävs för att ställa in systemet blir överdrivet lång. Användandet av singelkanals EEG-system, med torra aktiva elektroder (AE) under inspelningen, är ett aktuellt ämne. En AE är en elektrod som har en integrerad bioförstärkarkrets och är känd för att vara både mindre mottaglig för rörelseartefakter och för störning från omgivningen. I denna rapport presenteras utformningen av en AE-förförstärkare för singelkanals EEGinspelningar. Inledningsvis utfördes en grundlig litteraturöversikt där den rådande kunskapen och toppmoderna tekniken undersöktes. Därefter bestämdes designspecifikationerna, lämpliga topologier samt kretsdesigntekniker, för att maximera förstärkarens prestanda. Slutligen konstruerades tre olika förstärkares topologier och deras prestanda jämfördes med varandra liksom med etablerade medicin tekniska standarder och toppmoderna AE. Resultaten av en förförstärkare visade sig ha jämförbar prestanda med toppmoderna AE. Därför valdes denna topologi ut för en djupanalys och för fysisk layoutkonstruktion. Layouten för den valda förförstärkaren utformades och dess parasiter extraherades. Utformningen av postlayouten visade sig vara jämförbar med prestanda på en schematisk nivå, med en CMRR på 153dB, IRNV på 0.89µVRMS och en elektrodoffsettolerans på 450mV. Förförstärkarens design som presenteras i denna rapport har visat sig vara jämförbar med toppmoderna AE-förförstärkare och visar potential till framsteg för AEprestanda i singelkanals EEG-system
Coffey, Lucas B. "Assessing Ratio-Based Fatigue Indexes Using a Single Channel EEG". UNF Digital Commons, 2018. https://digitalcommons.unf.edu/etd/805.
Pełny tekst źródłaDietch, Jessica R. "Accuracy of Three Assessments of Sleep Timing, Duration and Efficiency Compared to a Single-Channel EEG Device". Thesis, University of North Texas, 2019. https://digital.library.unt.edu/ark:/67531/metadc1538787/.
Pełny tekst źródłaCheng, Pei-Ling, i 鄭珮綾. "Homecare sleep evaluation system based on single-channel EEG and single-channel EOG". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/r9w7d2.
Pełny tekst źródła國立陽明大學
醫學工程研究所
97
The quality of sleep is effective to our daily life, and more and more people have been experiencing sleep disorders in recent years. However the equipment and resources for sleep diagnosis are still limited. Although many researchers have developed automatic sleep scoring system, most of the systems are built based on PSG recording. A new homecare sleep recording device, “VitalBelt”, which records only three channel bio-signals (EEG, EOG, ECG), is applied in our scoring system. Sleep features are extracted individually, then a scoring method including exact scoring, refinement and impossible rejection three aspect to score sleep stages. Thirty subjects were recorded using both polysnomnography and VitalBelt. Comparing the manual score by polysnomography and automatic score by VitalBelt, overall agreement was 73.48% (Cohen’s kappa = 0.62). The result showed that the automatic sleep staging system developed for VitalBelt was reliable and might apply in homecare sleep monitoring. In addition, the methods of single-channel EEG with or without EOG were compared to evaluate the requirements of EOG for sleep staging. Paired t-test was used to estimate the agreement increase, with the result showing that the improvement was significant (P < 0.005) after combining EOG.
Liu, Xuan-Ming, i 劉軒銘. "Emotional Stress Determination Using Single-channel EEG Device". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/7vcmz8.
Pełny tekst źródła義守大學
電子工程學系
106
An emotional stress determination system is helpful for the modern people to reduce stress and avoid conflict, anxiety and misunderstanding. In this study, we used different multimedia to induce emotions and obtain EEG data. The raw EEG data was transformed into different EEG types by Fast Fourier Transform (FFT). However, the inducing emotion effect from subjects might be different because of the personal preferences, values and life experiences. Therefore Self-Assessment Manikin (SAM) is used as criterions for examining subjects’ emotion after induced emotion experiment. Experimental results shows that Support Vector Machine (SVM) achieves emotional determination with an average accuracy of 86.4%.The finding of this work is the high-gamma(γ) frequency feature from EEG power has the higher average accuracy rate of both positive emotion and negative emotion.
Guo-Fu, Hu, i 胡國甫. "A Single channel EEG system design and EEG signals analysis for sleep and awake". Thesis, 2003. http://ndltd.ncl.edu.tw/handle/19541673125630314843.
Pełny tekst źródła元智大學
機械工程學系
91
The control system of human central nervous system (CNS) is complex. Electroencephalogram (EEG) is one tool to explore the physiological function of brain. It is widely used to diagnose clinical CNS syndromes, such as epilepsy, brain tumor, Parkinson’s disease, etc. However, mostly commercial EEG instruments belong to multi-channel, high price and too big for portable usage. Hence, our thesis tries to design a low price, small volume and single channel of EEG device for easy portable usage. It can use for medical measurements .We used the fourier transform analysis for five volunteers at each time domain in the awake and sleep EEG signals. We found significant differences in sleep and awake waves form according to the volunteers’ sleep and awake statuses. The successful results are given us to have the confidence to test this EEG device in the clinical trials in the near future.
Dai, Zi-fei, i 戴子斐. "A Sleep Staging Method Based on Single Channel EEG Signal". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/9fvzy4.
Pełny tekst źródła國立中山大學
機械與機電工程學系研究所
97
One of the important measures for sleep quailty is sleep structure. Normal sleep consists of awake, rapid eye movement (REM) sleep and nonrapid eye movement (NREM) sleep states. NREM sleep can be further classified into stage 1, stage 2 and slow wave sleep (SWS). These stages can be analyzed quantitatively from various electrical signals such as the electroencephalogram (EEG), electro-oculogram (EOG), and electromyogram (EMG). The goal of this research is to develop a simple four-stage process to classify sleep into wake, REM, stage 1, stage 2 and SWS by using a single EEG channel. By applying the proposed approach to 48727 distinct epochs which are acquired from 62 persons, the experimental results show that the proposed method is achieves 76.98% of accuracy. The sensitivity and PPV for wake are 85.96% and 68.35%. Furthermore, the sensitivity and PPV for REM are 82.13% and 74.11%, respectively. The sensitivity and PPV for the stage 1 are 9.02% and 39.00%. The sensitivity and PPV for the stage 2 are 84.19% and 79.36%. The sensitivity and PPV for SWS are 81.53% and 85.40%.
Shu, Chen, i 舒晨. "Sleep Quality Assessment System Based on a Single-Channel EEG Device". Thesis, 2008. http://ndltd.ncl.edu.tw/handle/kmchb3.
Pełny tekst źródła國立陽明大學
醫學工程研究所
97
Sleep quality refers both the subjective assessment given by the subject of how restorative and undisturbed his/her sleep has been and to a series of objective measures which may be derived from polygraphic recordings. There are many factors could affect the sleep quality like personal behaviors, personal sensation, environment factors, and physiological changes. However, the most commonly used objective measure of sleep quality is an index of sleep fragmentation which may be derived from all three types of recordings. To be compared, object measures of sleep quality cost high and had not necessarily concordant results with subject ones. The aim of this study was to set up a new household sleep quality assessing system. This system was bases on one channel EEG signal to estimate the subjective measure of sleep quality. According to the signal recording, we could define the features of slow wave, alpha wave and spindles in time scale by using zero crossing method, Schimicek algorithm and RMS-amplitude for sleep staging. We used the one channel EEG data (Fpz-Cz) which was downloaded from Europe Data Format (EDF) sleep database to test the algorithm in our system. However, the results of our system had 81.67% accuracy from database hypnogram. Furthermore, we assessed more clinical sleep parameters, including total sleep time, sleep latency and percentage of light sleep, REM sleep and deep sleep to have an evaluation of household system by using sleeping quality score. . The sleeping quality score in normal human is 2.63±1.30 (n=8) evaluating form EDF database and the score in the patients with sleep syndrome is -0.15±2.54 (n=13) evaluating form MIT-BIH database. It was indeed different between these two groups. Therefore, 24 sets of EEG signal from 21 participators (29.13±9.47 years old, 15 males/ 6 females) were used in our experiments and separated into 2 groups by objective sleep stage. One was participator with good-sleep quality and another was participator with bad-sleep quality group. The average score of good-sleep group was 2.61±1.29 and these of bad-sleep group was -0.5±1.22. Therefore, our system could provide an effective index to assess the evaluation of sleep quality. According this study, we set up a household sleep quality system and help people to determine their sleep problem primarily and hope could raise living quality of human.
Chiu, Hao-chih, i 邱晧智. "Detecting Slow Wave Sleep by Using a single Channel EEG Signal". Thesis, 2008. http://ndltd.ncl.edu.tw/handle/wrj7j8.
Pełny tekst źródła國立中山大學
機械與機電工程學系研究所
96
One of the important topics in sleep medicine is sleep structure. Normal sleep consists of rapid eye movement (REM) sleep and nonrapid eye movement (NRME) sleep states. NREM sleep can be further classified into stage 1, 2 and slow wave sleep (SWS) according to the current sleep scoring standard. Among them, SWS has been considered to be very important due to its r restorative value. The goal of this research is to detect SWS by using a single channel EEG signal. Its applications can be divided into two phases. In the first phase, a personalized SWS detector is designed for each individuals By combining these personalized SWS detectors, the second phase develops a general SWS detection method that can be applied to general population with any personalized training process. By applying the proposed method to 62 persons, the experimental results show that the proposed method, in average, achieves 90.69% classification accuracy 90.09% sensitivity and 93.97% specificity. Our experimental results also demonstrate, when applied to persons with higher AHI (apnoea-hypopnea index) values, the proposed method can still provided satisfactory results.
Chang, Tien-Fu, i 張天福. "The study of neuro- rehabilitation using wireless single channel EEG device". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/30700074520279093871.
Pełny tekst źródła國立交通大學
電控工程研究所
100
This research conceives a new way of self-rehabilitation which is more helpful for patients, combined with brain waves to approach a new neuro-rehabilitation system. When the user is imaging hand action, the brain will produce a special kind of brain wave, and the system is recognizing the brain wave to control machine to take user’s hand moving, with the principle of neuro-rehabilitation and the enhancement of the bio-feedback method, then this system can make a better rehabilitating effect. The study analyzes the subjects’ event related motor imagery (MI) by using independent component analysis (ICA) and many other brain wave analyzing methods, such as event related spectral perturbation (ERSP), to find the best frequencies and time to recognize, using the sensor to receive brain waves and DSP chip with some algorithms to control the motor to take targets’ hand moving. Using this method of brain wave analyzing and system architecture, the system can recognize motor imagery brain wave successfully and control the rehabilitation machine quickly, to imitate the self-behaviors of paralyzed or stroke patients. This system is hoped to shorten the rehabilitating time greatly and promote the effect, and even saving many human resources.
Części książek na temat "EEG SINGLE-CHANNEL"
Palaniappan, Ramaswamy, Jenish Gosalia, Kenneth Revett i Andrews Samraj. "PIN Generation Using Single Channel EEG Biometric". W Advances in Computing and Communications, 378–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22726-4_40.
Pełny tekst źródłaGarcia-Molina, Gary, Michele Bellesi, Sander Pastoor, Stefan Pfundtner, Brady Riedner i Giulio Tononi. "Online Single EEG Channel Based Automatic Sleep Staging". W Lecture Notes in Computer Science, 333–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39354-9_36.
Pełny tekst źródłaZhang, Tinglin, Guang Li i Hans Liljenström. "Study on Single-Channel EEG Pattern Induced by Acupuncture". W Advances in Cognitive Neurodynamics (V), 485–91. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0207-6_66.
Pełny tekst źródłaWang, Jialin, Yanchun Zhang i Qinying Ma. "Analysis of Narcolepsy Based on Single-Channel EEG Signals". W Big Data Analytics, 295–306. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04780-1_20.
Pełny tekst źródłaSecerbegovic, A., S. Ibric, J. Nisic, N. Suljanovic i A. Mujcic. "Mental workload vs. stress differentiation using single-channel EEG". W IFMBE Proceedings, 511–15. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4166-2_78.
Pełny tekst źródłaPatel, Kishan, Harit Shah, Malcolm Dcosta i Dvijesh Shastri. "Evaluating NeuroSky’s Single-Channel EEG Sensor for Drowsiness Detection". W Communications in Computer and Information Science, 243–50. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58750-9_35.
Pełny tekst źródłaZhou, Tie Hua, Wen Long Liang, Hang Yu Liu, Wei Jian Pu i Ling Wang. "Wavelet-Based Emotion Recognition Using Single Channel EEG Device". W Intelligent Computing Methodologies, 510–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60796-8_44.
Pełny tekst źródłaGwizdka, Jacek. "Inferring Web Page Relevance Using Pupillometry and Single Channel EEG". W Information Systems and Neuroscience, 175–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67431-5_20.
Pełny tekst źródłaRadhakrishnan, B. L., E. Kirubakaran, Immanuel Johnraja Jebadurai i Kummari Gurudev. "Classifying Sleep Stages Automatically in Single-channel Against Multi-channel EEG: A Performance Analysis". W Lecture Notes in Electrical Engineering, 527–37. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2177-3_50.
Pełny tekst źródłaDora, Chinmayee, i Pradyut Kumar Biswal. "An ELM Based Regression Model for ECG Artifact Minimization from Single Channel EEG". W Intelligent Data Engineering and Automated Learning – IDEAL 2018, 269–76. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03493-1_29.
Pełny tekst źródłaStreszczenia konferencji na temat "EEG SINGLE-CHANNEL"
Raju, N. Purushotham, U. Venkatesh i Sudha Yadhav. "Diagnosing Insomnia Using Single Channel EEG Signal". W 2019 International Conference on Communication and Electronics Systems (ICCES). IEEE, 2019. http://dx.doi.org/10.1109/icces45898.2019.9002583.
Pełny tekst źródłaHendrawan, Muhammad Afif, Ulla Delfana Rosiani i Arwin Datumaya Wahyudi Sumari. "Single Channel Electroencephalogram (EEG) Based Biometric System". W 2022 IEEE 8th Information Technology International Seminar (ITIS). IEEE, 2022. http://dx.doi.org/10.1109/itis57155.2022.10010103.
Pełny tekst źródłaZhang, Chao, Siqi Han i Milin Zhang. "Single-channel EEG completion using Cascade Transformer". W 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2022. http://dx.doi.org/10.1109/biocas54905.2022.9948557.
Pełny tekst źródłaOral, E. Argun, I. Yucel Ozbek i M. Mustafa Codur. "Gender clasification based on single channel EEG signal". W 2017 International Artificial Intelligence and Data Processing Symposium (IDAP). IEEE, 2017. http://dx.doi.org/10.1109/idap.2017.8090273.
Pełny tekst źródłaLiang, Zhen, Hongtao Liu i Joseph N. Mak. "Detection of media enjoyment using single-channel EEG". W 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2016. http://dx.doi.org/10.1109/biocas.2016.7833845.
Pełny tekst źródłaSong, Xiaomu, Suk-Chung Yoon, Eric Rex, Jason Nieves i Caleb Moretz. "Driver drowsiness detection using single-channel dry EEG". W 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). IEEE, 2017. http://dx.doi.org/10.1109/spmb.2017.8257041.
Pełny tekst źródłaSzibbo, D., An Luo i T. J. Sullivan. "Removal of blink artifacts in single channel EEG". W 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2012. http://dx.doi.org/10.1109/embc.2012.6346723.
Pełny tekst źródłaJalilifard, Amir, Ednaldo Brigante Pizzolato i Md Kafiul Islam. "Emotion classification using single-channel scalp-EEG recording". W 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016. http://dx.doi.org/10.1109/embc.2016.7590833.
Pełny tekst źródłaKouchaki, Samaneh, i Saeid Sanei. "Supervised single channel source separation of EEG signals". W 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2013. http://dx.doi.org/10.1109/mlsp.2013.6661895.
Pełny tekst źródłaKatsigiannis, Stamos, Pablo Arnau-Gonzalez, Miguel Arevalillo-Herraez i Naeem Ramzan. "Single-channel EEG-based subject identification using visual stimuli". W 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE, 2021. http://dx.doi.org/10.1109/bhi50953.2021.9508581.
Pełny tekst źródła