Artykuły w czasopismach na temat „Earch convection”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Earch convection”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Liu, Zijing, Min Min, Jun Li, Fenglin Sun, Di Di, Yufei Ai, Zhenglong Li i in. "Local Severe Storm Tracking and Warning in Pre-Convection Stage from the New Generation Geostationary Weather Satellite Measurements". Remote Sensing 11, nr 4 (13.02.2019): 383. http://dx.doi.org/10.3390/rs11040383.
Pełny tekst źródłaZheng, Zhang, Liu, Liu i Che. "A Study of Vertical Structures and Microphysical Characteristics of Different Convective Cloud–Precipitation Types Using Ka-Band Millimeter Wave Radar Measurements". Remote Sensing 11, nr 15 (1.08.2019): 1810. http://dx.doi.org/10.3390/rs11151810.
Pełny tekst źródłaHuang, Yipeng, Murong Zhang, Yuchun Zhao, Ben Jong-Dao Jou, Hui Zheng, Changrong Luo i Dehua Chen. "Inter-Zone Differences of Convective Development in a Convection Outbreak Event over Southeastern Coast of China: An Observational Analysis". Remote Sensing 14, nr 1 (29.12.2021): 131. http://dx.doi.org/10.3390/rs14010131.
Pełny tekst źródłaLai, Anwei, Jinzhong Min, Jidong Gao, Hedi Ma, Chunguang Cui, Yanjiao Xiao i Zhibin Wang. "Assimilation of Radar Data, Pseudo Water Vapor, and Potential Temperature in a 3DVAR Framework for Improving Precipitation Forecast of Severe Weather Events". Atmosphere 11, nr 2 (9.02.2020): 182. http://dx.doi.org/10.3390/atmos11020182.
Pełny tekst źródłaPalotai, Csaba, Shawn Brueshaber, Ramanakumar Sankar i Kunio Sayanagi. "Moist Convection in the Giant Planet Atmospheres". Remote Sensing 15, nr 1 (30.12.2022): 219. http://dx.doi.org/10.3390/rs15010219.
Pełny tekst źródłaNakagawa, Takashi, i Shun-ichiro Karato. "Influence of realistic rheological properties on the style of mantle convection: roles of dynamic friction and depth-dependence of rheological properties". Geophysical Journal International 226, nr 3 (11.05.2021): 1986–96. http://dx.doi.org/10.1093/gji/ggab197.
Pełny tekst źródłaAnders, Evan H., Adam S. Jermyn, Daniel Lecoanet, J. R. Fuentes, Lydia Korre, Benjamin P. Brown i Jeffrey S. Oishi. "Convective Boundary Mixing Processes". Research Notes of the AAS 6, nr 2 (28.02.2022): 41. http://dx.doi.org/10.3847/2515-5172/ac5892.
Pełny tekst źródłaArango-Reyes, Karen, Marco Barranco-Jiménez, Gonzalo Ares de Parga-Álvarez i Fernando Angulo-Brown. "A Simple Thermodynamic Model of the Internal Convective Zone of the Earth". Entropy 20, nr 12 (18.12.2018): 985. http://dx.doi.org/10.3390/e20120985.
Pełny tekst źródłaRichardson, Mark T., Brian H. Kahn i Peter Kalmus. "Trajectory enhancement of low-earth orbiter thermodynamic retrievals to predict convection: a simulation experiment". Atmospheric Chemistry and Physics 23, nr 13 (13.07.2023): 7699–717. http://dx.doi.org/10.5194/acp-23-7699-2023.
Pełny tekst źródłaRybka, H., i H. Tost. "Uncertainties in future climate predictions due to convection parameterisations". Atmospheric Chemistry and Physics Discussions 13, nr 10 (16.10.2013): 26893–931. http://dx.doi.org/10.5194/acpd-13-26893-2013.
Pełny tekst źródłaMcTaggart-Cowan, Ron, Paul A. Vaillancourt, Ayrton Zadra, Leo Separovic, Shawn Corvec i Daniel Kirshbaum. "A Lagrangian Perspective on Parameterizing Deep Convection". Monthly Weather Review 147, nr 11 (30.10.2019): 4127–49. http://dx.doi.org/10.1175/mwr-d-19-0164.1.
Pełny tekst źródłaCancelada, Maite, Paola Salio, Daniel Vila, Stephen W. Nesbitt i Luciano Vidal. "Backward Adaptive Brightness Temperature Threshold Technique (BAB3T): A Methodology to Determine Extreme Convective Initiation Regions Using Satellite Infrared Imagery". Remote Sensing 12, nr 2 (20.01.2020): 337. http://dx.doi.org/10.3390/rs12020337.
Pełny tekst źródłaWhite, B. A., A. M. Buchanan, C. E. Birch, P. Stier i K. J. Pearson. "Quantifying the Effects of Horizontal Grid Length and Parameterized Convection on the Degree of Convective Organization Using a Metric of the Potential for Convective Interaction". Journal of the Atmospheric Sciences 75, nr 2 (24.01.2018): 425–50. http://dx.doi.org/10.1175/jas-d-16-0307.1.
Pełny tekst źródłaRivas Soriano, L., JM Sánchez Llorente, A. González Zamora i F. de Pablo Dávila. "Influence of land cover on lightning and convective precipitation over the European continent". Progress in Physical Geography: Earth and Environment 43, nr 3 (24.01.2019): 352–64. http://dx.doi.org/10.1177/0309133318825285.
Pełny tekst źródłaSeeley, Jacob T., i Robin D. Wordsworth. "Moist Convection Is Most Vigorous at Intermediate Atmospheric Humidity". Planetary Science Journal 4, nr 2 (1.02.2023): 34. http://dx.doi.org/10.3847/psj/acb0cb.
Pełny tekst źródłaHomeyer, Cameron R., i Matthew R. Kumjian. "Microphysical Characteristics of Overshooting Convection from Polarimetric Radar Observations". Journal of the Atmospheric Sciences 72, nr 2 (1.02.2015): 870–91. http://dx.doi.org/10.1175/jas-d-13-0388.1.
Pełny tekst źródłaHowle, L. E., R. P. Behringer i J. G. Georgiadis. "Convection and flow in porous media. Part 2. Visualization by shadowgraph". Journal of Fluid Mechanics 332 (luty 1997): 247–62. http://dx.doi.org/10.1017/s0022112096004004.
Pełny tekst źródłaRybka, H., i H. Tost. "Uncertainties in future climate predictions due to convection parameterisations". Atmospheric Chemistry and Physics 14, nr 11 (5.06.2014): 5561–76. http://dx.doi.org/10.5194/acp-14-5561-2014.
Pełny tekst źródłaHuang, Ying, Ping Long, Guanshi Wang i Sihai Luo. "Decoupling Method for the Convective-Dominated Leaching Process of Ion-Adsorption-Type Rare-Earth Ores". Minerals 13, nr 1 (6.01.2023): 89. http://dx.doi.org/10.3390/min13010089.
Pełny tekst źródłaMartin, David W., Richard A. Kohrs, Frederick R. Mosher, Carlo Maria Medaglia i Claudia Adamo. "Over-Ocean Validation of the Global Convective Diagnostic". Journal of Applied Meteorology and Climatology 47, nr 2 (1.02.2008): 525–43. http://dx.doi.org/10.1175/2007jamc1525.1.
Pełny tekst źródłaPasquero, Claudia, i Eli Tziperman. "Statistical Parameterization of Heterogeneous Oceanic Convection". Journal of Physical Oceanography 37, nr 2 (1.02.2007): 214–29. http://dx.doi.org/10.1175/jpo3008.1.
Pełny tekst źródłaKeene, Kelly M., i Russ S. Schumacher. "The Bow and Arrow Mesoscale Convective Structure". Monthly Weather Review 141, nr 5 (1.05.2013): 1648–72. http://dx.doi.org/10.1175/mwr-d-12-00172.1.
Pełny tekst źródłaJaniga, Matthew A., i Chris D. Thorncroft. "The Influence of African Easterly Waves on Convection over Tropical Africa and the East Atlantic". Monthly Weather Review 144, nr 1 (29.12.2015): 171–92. http://dx.doi.org/10.1175/mwr-d-14-00419.1.
Pełny tekst źródłaCachay Torres, Roberth, i José Roldan López. "Influence of the diffusive term on the modeling of two-dimensional (2D) wave propagation of the law of conservation of mass with constant convective flow velocity". Revista Ciencia y Tecnología 19, nr 1 (30.03.2023): 11–22. http://dx.doi.org/10.17268/rev.cyt.2023.01.01.
Pełny tekst źródłaBruick, Zachary S., Kristen L. Rasmussen, Angela K. Rowe i Lynn A. McMurdie. "Characteristics of Intense Convection in Subtropical South America as Influenced by El Niño–Southern Oscillation". Monthly Weather Review 147, nr 6 (14.05.2019): 1947–66. http://dx.doi.org/10.1175/mwr-d-18-0342.1.
Pełny tekst źródłaPereira, L. Gustavo, i Steven A. Rutledge. "Diurnal Cycle of Shallow and Deep Convection for a Tropical Land and an Ocean Environment and Its Relationship to Synoptic Wind Regimes". Monthly Weather Review 134, nr 10 (1.10.2006): 2688–701. http://dx.doi.org/10.1175/mwr3181.1.
Pełny tekst źródłaLin, Jia-Lin, Myong-In Lee, Daehyun Kim, In-Sik Kang i Dargan M. W. Frierson. "The Impacts of Convective Parameterization and Moisture Triggering on AGCM-Simulated Convectively Coupled Equatorial Waves". Journal of Climate 21, nr 5 (1.03.2008): 883–909. http://dx.doi.org/10.1175/2007jcli1790.1.
Pełny tekst źródłaManea, Vlad Constantin, Marina Manea, Mihai Pomeran, Lucian Besutiu i Luminita Zlagnean. "A parallelized particle tracing code for CFD simulations in Earth sciences". Acta Universitaria 22, nr 5 (15.08.2012): 19–26. http://dx.doi.org/10.15174/au.2012.358.
Pełny tekst źródłaPu, Jingchen, i Xiaolei Zou. "Characteristic Scales of Tropical Convection Based on the Japanese Advanced Himawari-8 Imager Observations". Remote Sensing 14, nr 7 (23.03.2022): 1553. http://dx.doi.org/10.3390/rs14071553.
Pełny tekst źródłaDhaka, S. K., R. Bhatnagar, Y. Shibagaki, H. Hashiguchi, S. Fukao, T. Kozu i V. Panwar. "Characteristics of gravity waves generated in a convective and a non-convective environment revealed from hourly radiosonde observation under CPEA-II campaign". Annales Geophysicae 29, nr 12 (16.12.2011): 2259–76. http://dx.doi.org/10.5194/angeo-29-2259-2011.
Pełny tekst źródłaGrandpeix, Jean-Yves, Jean-Philippe Lafore i Frédérique Cheruy. "A Density Current Parameterization Coupled with Emanuel’s Convection Scheme. Part II: 1D Simulations". Journal of the Atmospheric Sciences 67, nr 4 (1.04.2010): 898–922. http://dx.doi.org/10.1175/2009jas3045.1.
Pełny tekst źródłaWagner, Till M., i Hans-F. Graf. "An Ensemble Cumulus Convection Parameterization with Explicit Cloud Treatment". Journal of the Atmospheric Sciences 67, nr 12 (1.12.2010): 3854–69. http://dx.doi.org/10.1175/2010jas3485.1.
Pełny tekst źródłaHughes, T. "Thermal Convection in Ice Sheets: We look but do not see". Journal of Glaciology 31, nr 107 (1985): 39–48. http://dx.doi.org/10.1017/s0022143000004974.
Pełny tekst źródłaHopper, Larry J., i Courtney Schumacher. "Modeled and Observed Variations in Storm Divergence and Stratiform Rain Production in Southeastern Texas". Journal of the Atmospheric Sciences 69, nr 4 (30.03.2012): 1159–81. http://dx.doi.org/10.1175/jas-d-11-092.1.
Pełny tekst źródłaStelten, Sean, i William A. Gallus. "Pristine Nocturnal Convective Initiation: A Climatology and Preliminary Examination of Predictability". Weather and Forecasting 32, nr 4 (1.08.2017): 1613–35. http://dx.doi.org/10.1175/waf-d-16-0222.1.
Pełny tekst źródłaStechmann, Samuel N., i Andrew J. Majda. "Gravity Waves in Shear and Implications for Organized Convection". Journal of the Atmospheric Sciences 66, nr 9 (1.09.2009): 2579–99. http://dx.doi.org/10.1175/2009jas2976.1.
Pełny tekst źródłaSantellanes, Sean R., George S. Young, David J. Stensrud, Matthew R. Kumjian i Ying Pan. "Environmental Conditions Associated with Horizontal Convective Rolls, Cellular Convection, and No Organized Circulations". Monthly Weather Review 149, nr 5 (maj 2021): 1305–16. http://dx.doi.org/10.1175/mwr-d-20-0207.1.
Pełny tekst źródłaLi, Jianfeng, Zhe Feng, Yun Qian i L. Ruby Leung. "A high-resolution unified observational data product of mesoscale convective systems and isolated deep convection in the United States for 2004–2017". Earth System Science Data 13, nr 2 (3.03.2021): 827–56. http://dx.doi.org/10.5194/essd-13-827-2021.
Pełny tekst źródłaPosselt, Derek J., Susan van den Heever, Graeme Stephens i Matthew R. Igel. "Changes in the Interaction between Tropical Convection, Radiation, and the Large-Scale Circulation in a Warming Environment". Journal of Climate 25, nr 2 (15.01.2012): 557–71. http://dx.doi.org/10.1175/2011jcli4167.1.
Pełny tekst źródłaVadas, S. L., M. J. Taylor, P. D. Pautet, P. A. Stamus, D. C. Fritts, H. L. Liu, F. T. São Sabbas, V. T. Rampinelli, P. Batista i H. Takahashi. "Convection: the likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign". Annales Geophysicae 27, nr 1 (14.01.2009): 231–59. http://dx.doi.org/10.5194/angeo-27-231-2009.
Pełny tekst źródłaSuselj, Kay, Marcin J. Kurowski i Joao Teixeira. "A Unified Eddy-Diffusivity/Mass-Flux Approach for Modeling Atmospheric Convection". Journal of the Atmospheric Sciences 76, nr 8 (31.07.2019): 2505–37. http://dx.doi.org/10.1175/jas-d-18-0239.1.
Pełny tekst źródłaThielen, J., i A. Gadian. "Influence of different wind directions in relation to topography on the outbreak of convection in Northern England". Annales Geophysicae 14, nr 10 (31.10.1996): 1078–87. http://dx.doi.org/10.1007/s00585-996-1078-3.
Pełny tekst źródłaMitrovica, J. X., J. Austermann, S. Coulson, J. R. Creveling, M. J. Hoggard, G. T. Jarvis i F. D. Richards. "Dynamic Topography and Ice Age Paleoclimate". Annual Review of Earth and Planetary Sciences 48, nr 1 (30.05.2020): 585–621. http://dx.doi.org/10.1146/annurev-earth-082517-010225.
Pełny tekst źródłaWang, Xinyue, Hironobu Iwabuchi i Jean-Baptiste Courbot. "Analysis of Diurnal Evolution of Cloud Properties and Convection Tracking over the South China Coastal Area". Remote Sensing 14, nr 19 (9.10.2022): 5039. http://dx.doi.org/10.3390/rs14195039.
Pełny tekst źródłaGhernaout, Badia, Said Bouabdallah, Aissa Atia i Müslüm Arıcı. "Heat and Fluid Flow in an Open Agricultural Greenhouse in Presence of Plants". Advances in Modelling and Analysis B 64, nr 1-4 (31.12.2021): 1–8. http://dx.doi.org/10.18280/ama_b.641-401.
Pełny tekst źródłaChervov, V. V., N. A. Bushenkova i G. G. Chernykh. "Tectonic depressions on the East-European and Siberian platforms: numerical modeling of convection beneath the Eurasian continent". Geodynamics & Tectonophysics 12, nr 1 (21.03.2021): 84–99. http://dx.doi.org/10.5800/gt-2021-12-1-0514.
Pełny tekst źródłaInoue, Kuniaki, i Larissa E. Back. "Gross Moist Stability Assessment during TOGA COARE: Various Interpretations of Gross Moist Stability". Journal of the Atmospheric Sciences 72, nr 11 (1.11.2015): 4148–66. http://dx.doi.org/10.1175/jas-d-15-0092.1.
Pełny tekst źródłaSatake, Hidemoto, i Toshio Tagawa. "Influence of Centrifugal Buoyancy in Thermal Convection within a Rotating Spherical Shell". Symmetry 14, nr 10 (26.09.2022): 2021. http://dx.doi.org/10.3390/sym14102021.
Pełny tekst źródłaNi, Xiang, Chuntao Liu i Edward Zipser. "Ice Microphysical Properties near the Tops of Deep Convective Cores Implied by the GPM Dual-Frequency Radar Observations". Journal of the Atmospheric Sciences 76, nr 9 (1.09.2019): 2899–917. http://dx.doi.org/10.1175/jas-d-18-0243.1.
Pełny tekst źródłaKastman, Joshua, Patrick Market i Neil Fox. "Dynamic Ensemble Analysis of Frontal Placement Impacts in the Presence of Elevated Thunderstorms during PRECIP Events". Atmosphere 9, nr 9 (29.08.2018): 339. http://dx.doi.org/10.3390/atmos9090339.
Pełny tekst źródła