Gotowa bibliografia na temat „Earch convection”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Earch convection”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Earch convection"
Liu, Zijing, Min Min, Jun Li, Fenglin Sun, Di Di, Yufei Ai, Zhenglong Li i in. "Local Severe Storm Tracking and Warning in Pre-Convection Stage from the New Generation Geostationary Weather Satellite Measurements". Remote Sensing 11, nr 4 (13.02.2019): 383. http://dx.doi.org/10.3390/rs11040383.
Pełny tekst źródłaZheng, Zhang, Liu, Liu i Che. "A Study of Vertical Structures and Microphysical Characteristics of Different Convective Cloud–Precipitation Types Using Ka-Band Millimeter Wave Radar Measurements". Remote Sensing 11, nr 15 (1.08.2019): 1810. http://dx.doi.org/10.3390/rs11151810.
Pełny tekst źródłaHuang, Yipeng, Murong Zhang, Yuchun Zhao, Ben Jong-Dao Jou, Hui Zheng, Changrong Luo i Dehua Chen. "Inter-Zone Differences of Convective Development in a Convection Outbreak Event over Southeastern Coast of China: An Observational Analysis". Remote Sensing 14, nr 1 (29.12.2021): 131. http://dx.doi.org/10.3390/rs14010131.
Pełny tekst źródłaLai, Anwei, Jinzhong Min, Jidong Gao, Hedi Ma, Chunguang Cui, Yanjiao Xiao i Zhibin Wang. "Assimilation of Radar Data, Pseudo Water Vapor, and Potential Temperature in a 3DVAR Framework for Improving Precipitation Forecast of Severe Weather Events". Atmosphere 11, nr 2 (9.02.2020): 182. http://dx.doi.org/10.3390/atmos11020182.
Pełny tekst źródłaPalotai, Csaba, Shawn Brueshaber, Ramanakumar Sankar i Kunio Sayanagi. "Moist Convection in the Giant Planet Atmospheres". Remote Sensing 15, nr 1 (30.12.2022): 219. http://dx.doi.org/10.3390/rs15010219.
Pełny tekst źródłaNakagawa, Takashi, i Shun-ichiro Karato. "Influence of realistic rheological properties on the style of mantle convection: roles of dynamic friction and depth-dependence of rheological properties". Geophysical Journal International 226, nr 3 (11.05.2021): 1986–96. http://dx.doi.org/10.1093/gji/ggab197.
Pełny tekst źródłaAnders, Evan H., Adam S. Jermyn, Daniel Lecoanet, J. R. Fuentes, Lydia Korre, Benjamin P. Brown i Jeffrey S. Oishi. "Convective Boundary Mixing Processes". Research Notes of the AAS 6, nr 2 (28.02.2022): 41. http://dx.doi.org/10.3847/2515-5172/ac5892.
Pełny tekst źródłaArango-Reyes, Karen, Marco Barranco-Jiménez, Gonzalo Ares de Parga-Álvarez i Fernando Angulo-Brown. "A Simple Thermodynamic Model of the Internal Convective Zone of the Earth". Entropy 20, nr 12 (18.12.2018): 985. http://dx.doi.org/10.3390/e20120985.
Pełny tekst źródłaRichardson, Mark T., Brian H. Kahn i Peter Kalmus. "Trajectory enhancement of low-earth orbiter thermodynamic retrievals to predict convection: a simulation experiment". Atmospheric Chemistry and Physics 23, nr 13 (13.07.2023): 7699–717. http://dx.doi.org/10.5194/acp-23-7699-2023.
Pełny tekst źródłaRybka, H., i H. Tost. "Uncertainties in future climate predictions due to convection parameterisations". Atmospheric Chemistry and Physics Discussions 13, nr 10 (16.10.2013): 26893–931. http://dx.doi.org/10.5194/acpd-13-26893-2013.
Pełny tekst źródłaRozprawy doktorskie na temat "Earch convection"
Rostami, Masoud. "Dynamical influence of diabatic processes upon developing instabilities of Earth and planetary jets and vortices". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066186.
Pełny tekst źródłaThe thesis is devoted to understanding dynamical influence of diabatic effects, like moist convection, on instabilities of vortices in Earth and planetary atmospheres. A vertically integrated atmospheric model with relaxational parameterisation of phase transitions and related heat release, and with convective fluxes included in mass and momentum equations, the moist-convective rotating shallow water model, was used for this purpose. The previous version of the model was improved to include precipitable water and its vaporisation and entrainment. The approach consists in 1)detailed stability analysis of idealised, or extracted from the data, vortex profiles, 2)study of nonlinear saturation of the instabilities with the help of finite-volume high-resolution numerical code. The main results of the thesis are: 1. Demonstration and quantification of strong influence of moist effects upon instabilities of synoptic vortices, including cyclone-anticyclone asymmetry of mid-latitude vortices of weak intensity, and intensification of tropical-cyclone like vortices with formation of typical cloud patterns. 2. Explanation of the dynamical origin of the Saturn's North Polar hexagon, and of the lack of similar structure at the South Pole, in terms of instability of the coupled polar vortex and circumpolar jet, and their nonlinear saturation.3. Explanation of the observed structure of Mars' winter polar vortex in terms of instability of the latter, and its saturation in the presence of radiative heating/cooling and CO2 deposition (gas-solid phase transition). A new simple parameterisation of the latter process, including the influence of deposition nuclei, was developed in the thesis
Hall, Paul S. "Free and forced convection in earth's upper mantle /". View online ; access limited to URI, 2003. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3115631.
Pełny tekst źródłaPark, Sewon. "Diurnal cycle of deep tropical convection". Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/54985.
Pełny tekst źródłaTitle as it appears in the M.I.T. Graduate List, Feb. 1992: Diurnal cycle of deep cloud cover in tropics.
Includes bibliographical references (leaf 53).
by Sewon Park.
M.S.
Kocha, Cécile. "Interactions entre poussières désertiques et convection profonde en Afrique de l'Ouest : Observations et modélisation à échelle convective". Phd thesis, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-00741943.
Pełny tekst źródłaAlverson, Keith D. 1965. "Topographic preconditioning of open ocean deep convection". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/53023.
Pełny tekst źródłaIncludes bibliographical references (leaves 143-146).
by Keith D. Alverson.
Ph.D.
Amiri, Khanmakani Hosein. "The visible consequences of rising convective streams in the Earth". Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336266.
Pełny tekst źródłaBoldi, Robert A. (Robert Arthur). "A model of ion chemistry of electrified convection". Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/51502.
Pełny tekst źródłaIncludes bibliographical references (leaves 175-182) and index.
by Robert A. Boldi.
Ph.D.
Larson, Vincent Edwin 1970. "The effects of thermal radiation on dry convection". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/54433.
Pełny tekst źródłaIncludes bibliographical references (p. 96-99).
This work seeks to improve understanding of atmospheres in radiative-convective equilibrium. We use two types of idealized, dry radiative-convective models. The first type of model resembles Rayleigh-Benard convection, except that thermal radiative transfer is included. This type of system can be investigated in the laboratory. The second type of model is a more faithful representation of the earth's atmosphere. In this model, the temperature at the upper boundary is left unspecified, unlike the case of Rayleigh-Benard convection. For these two types of radiative-convective models, we perform various theoretical and numerical analyses of the stability properties, and various analyses of the weakly nonlinear convecting state. We prove that in these models, convection arises as monotonically growing cells, not as an oscillatory instability. That is, we prove exchange of stabilities. We investigate the linear stability modes. We find that in most cases, the linear stability threshold can be described approximately or exactly in terms of a radiative Rayleigh number. The radiative Rayleigh numbers used are like the classical Rayleigh number but with modified temperature and thermal diffusivity scales. Inspection of the radiative Rayleigh numbers reveals how various external parameters, such as the net incoming solar radiation or infrared opacity, affect the stability properties. We use the energy method to find a threshold value of a stability parameter below which all disturbances to the radiative equilibrium state, regardless of magnitude, decay. For those radiative equilibrium states which have a linear temperature profile, the energy stability threshold coincides with the linear stability threshold, thereby ruling out the possibility of subcritical instabilities. When the temperature profile is nonlinear, the energy stability profile lies below the linear stability threshold. We study weakly nonlinear convection in the atmospheric radiative-convective model via the mean field approximation. In contrast to the stability threshold, the vertical convective heat flux in the weakly nonlinear convecting state turns out to be little affected by the values of viscosity, thermal diffusivity, or radiative damping. However, the convective heat flux is strongly affected by the net incoming solar radiation and the optical depth. We formulate scaling laws for vertical convective heat flux, vertical velocity, and temperature perturbations. These scales extend the Prandtl scales to higher altitudes.
by Vincent Edwin Larson.
Ph.D.
Bell, Peter Ian. "The effect of bumps on convection in the earth's core". Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335890.
Pełny tekst źródłade, Lavaissiere de Lavergne Casimir. "Cessation of southern ocean deep convection under anthropogenic climate change". Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119766.
Pełny tekst źródłaEn 1974, des observations satellite nouvellement disponibles révélèrent la présence d'une géante surface d'eau libre au sein de la glace de mer entourant l'Antarctique, qui persista tout au long de l'hiver et réapparut les deux hivers suivants. Les recherches qui suivirent montrèrent que les eaux étaient maintenues libres de glace par la convection profonde, permettant à une grande quantité de chaleur de remonter des profondeurs pour être ensuite libérée dans l'atmosphère. Si la polynya continue de susciter l'intérêt des climatologues, elle n'est cependant pas réapparue depuis 1976. Nous utilisons ici des expériences de modélisation pour montrer que la convection profonde dans l'Océan Austral, commune dans les modèles de climat actuels, est fortement sensible au forçage anthropique, et cesse dans beaucoup de modèles quand ceux-ci sont forcés par un scénario de fortes émissions. Le ralentissement de la ventilation profonde résulte de la baisse progressive de la salinité des eaux de surface, une tendance corroborée par les observations des dernières décennies. Nos résultats suggèrent que la convection profonde dans l'Océan Austral sera moins fréquente dans le futur, et a peut-être déjà été significativement affaiblie relativement à la période préindustrielle, avec d'importantes conséquences pour la circulation océanique et le climat.
Książki na temat "Earch convection"
Dynamic earth: Plates, plumes, and mantle convection. Cambridge: Cambridge University Press, 1999.
Znajdź pełny tekst źródłaRoyal Society (Great Britain). Discussion Meeting. Chemical reservoirs and convection in the earth's mantle: Papers of a discussion meeting. London: The Royal Society, 2002.
Znajdź pełny tekst źródłaVan der Hilst, Robert D. (Robert Dirk), 1961-, red. Earth's deep mantle: Structure, composition, and evolution. Washington, DC: American Geophysical Union, 2005.
Znajdź pełny tekst źródłaErickson, Gary M. A mechanism for magnetospheric substorms. [Washington, D.C: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaChassignet, Eric P. Buoyancy-driven flows. Cambridge: Cambridge University Press, 2012.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration. i Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences., red. Lateral variation in upper mantle temperature and composition beneath mid-ocean ridges inferred from shear-wave propagation, geoid, and bathymetry. [Cambridge, Mass.]: Dept. of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 1991.
Znajdź pełny tekst źródłaA, Gnoffo Peter, i Langley Research Center, red. Convective and radiative heating for vehicle return from the Moon and Mars. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Znajdź pełny tekst źródłaWilson, Gordon R. The high latitude ionosphere-magnetosphere transition region: Simulation and data comparison. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaGordon, Howard R. Ocean observations with EOS/MODIS: Algorithm development and post launch studies : semi-annual report (for July - December 1995). [Washington, D.C: National Aeronautics and Space Administration, 1996.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Ocean observations with EOS/MODIS: Algorithm development and post launch studies : semi-annual report (for January - June 1996), contract number NAS5-31363. [Washington, DC: National Aeronautics and Space Administration, 1996.
Znajdź pełny tekst źródłaCzęści książek na temat "Earch convection"
Bercovici, David, i Elvira Mulyukova. "Mantle Convection". W Encyclopedia of Solid Earth Geophysics, 1–21. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10475-7_130-1.
Pełny tekst źródłaBercovici, David. "Mantle Convection". W Encyclopedia of Solid Earth Geophysics, 832–51. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8702-7_130.
Pełny tekst źródłaBercovici, David, i Elvira Mulyukova. "Mantle Convection". W Encyclopedia of Solid Earth Geophysics, 1059–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58631-7_130.
Pełny tekst źródłaKistovich, Anatoly. "Convective Motions in Water: Linear and Nonlinear Models, Criteria of Convection Onset". W Springer Proceedings in Earth and Environmental Sciences, 174–88. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11533-3_18.
Pełny tekst źródłaHuppert, H. E., B. A. Buffett, J. R. Lister i A. W. Woods. "Solidification and Convection in the Core of the Earth". W Interactive Dynamics of Convection and Solidification, 265–67. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2809-4_42.
Pełny tekst źródłaDavies, Geoffrey F. "Some Clarity: Two Convection Modes, Interacting". W Stories from the Deep Earth, 139–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91359-5_12.
Pełny tekst źródłaFedyushkin, A. I. "Stratification and Segregation Under Laminar Convection". W Advanced Hydrodynamics Problems in Earth Sciences, 153–69. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-23050-9_14.
Pełny tekst źródłaSingh, R. N., i A. Manglik. "Parameterized Mantle Convection Analysis for Crustal Processes". W Society of Earth Scientists Series, 75–88. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06471-0_4.
Pełny tekst źródłaSanchez, David A., Christopher Gonzalez, David A. Yuen, Grady B. Wright i Gregory A. Barnett. "High Rayleigh Number Mantle Convection on GPU". W Lecture Notes in Earth System Sciences, 335–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16405-7_22.
Pełny tekst źródłaLin, Li Xi, i H. T. Hsu. "Excitement of the Toroidal Field in Mantle Convection". W Geodesy and Physics of the Earth, 291–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78149-0_68.
Pełny tekst źródłaStreszczenia konferencji na temat "Earch convection"
Timchenko, Victoria. "Eddie Leonardi Memorial Lecture: Natural Convection from Earth to Space". W 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23354.
Pełny tekst źródłaChang, Tiejun, Xiaoxiong Xiong i Ashish Shrestha. "Assessment of MODIS TEB calibration performance using deep convective clouds". W Earth Observing Systems XXIV, redaktorzy James J. Butler, Xiaoxiong (Jack) Xiong i Xingfa Gu. SPIE, 2019. http://dx.doi.org/10.1117/12.2528043.
Pełny tekst źródłaMu, Qiaozhen, Amit Angal, Aisheng Wu i Xiaoxiong Xiong. "Performance assessment of the NOAA-20 VIIRS RSB using deep convective clouds". W Earth Observing Systems XXVI, redaktorzy James J. Butler, Xiaoxiong (Jack) Xiong i Xingfa Gu. SPIE, 2021. http://dx.doi.org/10.1117/12.2593514.
Pełny tekst źródłaJeong, Gi Ho, Soo In Jeong, Kui Soon Kim i Man Young Ha. "Numerical Analysis of Natural Convection and Phase Change Problem With Finite Volume Method". W ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-3108.
Pełny tekst źródłaChang, Tiejun, Carlos Pérez Díaz, Ashish Shrestha i Xiaoxiong Xiong. "Application of quasi-deep convective clouds method for MODIS and VIIRS TEB calibration assessments". W Earth Observing Systems XXV, redaktorzy James J. Butler, Xiaoxiong (Jack) Xiong i Xingfa Gu. SPIE, 2020. http://dx.doi.org/10.1117/12.2567221.
Pełny tekst źródłaBoth, J. W., S. E. Gasda, I. Aavatsmark i R. Kaufmann. "Gravity-driven Convective Mixing of CO2 in Oil". W The Third Sustainable Earth Sciences Conference and Exhibition. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201414266.
Pełny tekst źródłaColombani, Jean. "Microgravity and earth thermal diffusion in liquids holographic visualization of convection". W HADRONS AND NUCLEI: First International Symposium. AIP, 2000. http://dx.doi.org/10.1063/1.1302586.
Pełny tekst źródłaWang, Xin, Ning Mei, Xijun Yu i Yan Li. "A Method of Identifying the Ingredient of Homo-Zeotrope by Measurable Temperature Field of Pipe Convective Heat Transfer Model". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62066.
Pełny tekst źródłaReynier, Philippe. "Convective Blockage for High-Speed Earth Entries: A Review". W 40th Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-3806.
Pełny tekst źródłaBhatt, Rajendra, David R. Doelling, Benjamin R. Scarino, Arun Gopalan i Conor O. Haney. "Advances in utilizing tropical deep convective clouds as a stable target for on-orbit calibration of satellite imager reflective solar bands". W Earth Observing Systems XXIV, redaktorzy James J. Butler, Xiaoxiong (Jack) Xiong i Xingfa Gu. SPIE, 2019. http://dx.doi.org/10.1117/12.2530636.
Pełny tekst źródłaRaporty organizacyjne na temat "Earch convection"
Gallagher, Alex, Sandra LeGrand, Taylor Hodgdon i Theodore Letcher. Simulating environmental conditions for Southwest United States convective dust storms using the Weather Research and Forecasting Model v4.1. Engineer Research and Development Center (U.S.), sierpień 2022. http://dx.doi.org/10.21079/11681/44963.
Pełny tekst źródłaKedzierski, Mark A., i Donggyu Kang. Horizontal convective boiling of R1234yf, R134a, and R450A within a micro-fin tube :. Gaithersburg, MD: National Institute of Standards and Technology (U.S.), sierpień 2017. http://dx.doi.org/10.6028/nist.tn.1966.
Pełny tekst źródłaBoily-Auclair, É., P. Mercier-Langevin, P. S. Ross i D. Pitre. Alteration and ore assemblages of the LaRonde Zone 5 (LZ5) deposit and Ellison mineralized zones, Doyon-Bousquet-LaRonde mining camp, Abitibi, Quebec. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329637.
Pełny tekst źródła