Gotowa bibliografia na temat „E3 LIGASE ACTIVITY”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „E3 LIGASE ACTIVITY”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "E3 LIGASE ACTIVITY"
Pao, Kuan-Chuan, Nicola T. Wood, Axel Knebel, Karim Rafie, Mathew Stanley, Peter D. Mabbitt, Ramasubramanian Sundaramoorthy, Kay Hofmann, Daan M. F. van Aalten i Satpal Virdee. "Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity". Nature 556, nr 7701 (kwiecień 2018): 381–85. http://dx.doi.org/10.1038/s41586-018-0026-1.
Pełny tekst źródłaMarblestone, Jeffrey G., K. G. Suresh Kumar, Michael J. Eddins, Craig A. Leach, David E. Sterner, Michael R. Mattern i Benjamin Nicholson. "Novel Approach for Characterizing Ubiquitin E3 Ligase Function". Journal of Biomolecular Screening 15, nr 10 (23.09.2010): 1220–28. http://dx.doi.org/10.1177/1087057110380456.
Pełny tekst źródłaLi, Qianyan, Arshdeep Kaur, Kyoko Okada, Richard J. McKenney i JoAnne Engebrecht. "Differential requirement for BRCA1-BARD1 E3 ubiquitin ligase activity in DNA damage repair and meiosis in the Caenorhabditis elegans germ line". PLOS Genetics 19, nr 1 (30.01.2023): e1010457. http://dx.doi.org/10.1371/journal.pgen.1010457.
Pełny tekst źródłaKim, Jong Hum, Seok Keun Cho, Tae Rin Oh, Moon Young Ryu, Seong Wook Yang i Woo Taek Kim. "MPSR1 is a cytoplasmic PQC E3 ligase for eliminating emergent misfolded proteins in Arabidopsis thaliana". Proceedings of the National Academy of Sciences 114, nr 46 (30.10.2017): E10009—E10017. http://dx.doi.org/10.1073/pnas.1713574114.
Pełny tekst źródłaBustos, Francisco, Sunil Mathur, Carmen Espejo-Serrano, Rachel Toth, C. James Hastie, Satpal Virdee i Greg M. Findlay. "Activity-based probe profiling of RNF12 E3 ubiquitin ligase function in Tonne-Kalscheuer syndrome". Life Science Alliance 5, nr 11 (28.06.2022): e202101248. http://dx.doi.org/10.26508/lsa.202101248.
Pełny tekst źródłaChinnam, Meenalakshmi, Chao Xu, Rati Lama, Xiaojing Zhang, Carlos D. Cedeno, Yanqing Wang, Aimee B. Stablewski, David W. Goodrich i Xinjiang Wang. "MDM2 E3 ligase activity is essential for p53 regulation and cell cycle integrity". PLOS Genetics 18, nr 5 (19.05.2022): e1010171. http://dx.doi.org/10.1371/journal.pgen.1010171.
Pełny tekst źródłaGong, Yao, i Yue Chen. "UbE3-APA: a bioinformatic strategy to elucidate ubiquitin E3 ligase activities in quantitative proteomics study". Bioinformatics 38, nr 8 (9.02.2022): 2211–18. http://dx.doi.org/10.1093/bioinformatics/btac069.
Pełny tekst źródłaHorn-Ghetko, Daniel, David T. Krist, J. Rajan Prabu, Kheewoong Baek, Monique P. C. Mulder, Maren Klügel, Daniel C. Scott, Huib Ovaa, Gary Kleiger i Brenda A. Schulman. "Ubiquitin ligation to F-box protein targets by SCF–RBR E3–E3 super-assembly". Nature 590, nr 7847 (3.02.2021): 671–76. http://dx.doi.org/10.1038/s41586-021-03197-9.
Pełny tekst źródłaKelsall, Ian R., Jiazhen Zhang, Axel Knebel, J. Simon C. Arthur i Philip Cohen. "The E3 ligase HOIL-1 catalyses ester bond formation between ubiquitin and components of the Myddosome in mammalian cells". Proceedings of the National Academy of Sciences 116, nr 27 (17.06.2019): 13293–98. http://dx.doi.org/10.1073/pnas.1905873116.
Pełny tekst źródłaLi, Haoyan, Yanjia Fang, Chunyi Niu, Hengyi Cao, Ting Mi, Hong Zhu, Junying Yuan i Jidong Zhu. "Inhibition of cIAP1 as a strategy for targeting c-MYC–driven oncogenic activity". Proceedings of the National Academy of Sciences 115, nr 40 (4.09.2018): E9317—E9324. http://dx.doi.org/10.1073/pnas.1807711115.
Pełny tekst źródłaRozprawy doktorskie na temat "E3 LIGASE ACTIVITY"
Dickens, Michael. "Small molecule inhibitors of Mdm2 E3 ubiquitin ligase activity". Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/11960/.
Pełny tekst źródłaZANCHETTA, MELANIA EVA. "BRAF35 as target of MID1/TRIM18 E3 ligase activity". Doctoral thesis, Università degli Studi di Trieste, 2016. http://hdl.handle.net/11368/2908069.
Pełny tekst źródłaFu, Wei. "Regulation of FOXO stability and activity by MDM2 E3 ligase". [Tampa, Fla] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002222.
Pełny tekst źródłaPao, Kuan-Chuan. "Design and synthesis of an E3 ligase activity-based probe and its application for the discovery of a new class of E3 ligase". Thesis, University of Dundee, 2018. https://discovery.dundee.ac.uk/en/studentTheses/6239e172-60b3-47c3-81e1-f4b0a577f1a4.
Pełny tekst źródłaKoliopoulos, Marios Grigorios. "Structural and functional basis for TRIM25 E3 ligase catalytic activity and NS1-mediated suppression". Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/10038260/.
Pełny tekst źródłaValentini, E. "UNDERSTANDING THE CATALYTIC MECHANISMS OF UBIQUITIN-E3 LIGASES". Doctoral thesis, Università degli Studi di Milano, 2016. http://hdl.handle.net/2434/354478.
Pełny tekst źródłaFurlan, Giulia [Verfasser]. "Phosphorylation of the E3 ubiquitin ligase PUB22 controls its ubiquitination activity to dampen the immune response / Giulia Furlan". Halle, 2017. http://d-nb.info/1141177102/34.
Pełny tekst źródłaFoster, Benjamin. "An in vitro biochemical investigation into the conformation, binding and E3-ubiquitin ligase activity of mammalian UHRF1 with reconstituted chromatin". Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/55875.
Pełny tekst źródłaGao, Chengzhuo. "Mechanisms Underlying the Regulation and Functions of HDAC7". Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1213890889.
Pełny tekst źródłaCourivaud, Thomas. "Caractérisation d'un nouveau mécanisme d'action de la E3 ubiquitine ligase WWP1 et régulation de son activité dans la cancérogenèse". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066300/document.
Pełny tekst źródłaThe TGF-β pathway plays a biphasic role during cancerogenesis. My laboratory identified a new protein, WWP1, as a negative regulator of TGF-β signaling. WWP1 is an E3 ubiquitin ligase that triggers polyubiquitination and degradation of TGF-β type I receptor. A genomic amplification of WWP1 is found in a large portion of mammary and prostatic tumors, suggesting a key role for WWP1 during carcinogenesis related to TGF-β. My thesis project was to determine the regulation of the catalytic activity of WWP1 and a new molecular mechanism of action of WWP1 whose deregulation can be implicated in cancerogenesis. My results indicate that at steady states, WWP1 is monoubiquitinated, its polyubiquitination activity being silenced due to the inhibitory effects of C2 or/and WW domains on its Hect domain. In presence of substrates, WWP1 is « opened » and induces polyubiquitination and degradation of its substrates. Moreover, a WWP1 mutation found in prostate cancer disrupts this regulatory mechanism. It possesses an increased ligase activity towards itself and its substrates, which leads to the attenuation of TGF-β cytostatic signaling, a consequence that could conceivably confer tumorigenic properties to WWP1. We also identified STARD13 as a novel WWP1 interacting partner. STARD13 has a RhoGAP activity, and is considered as a tumor suppressor. We have shown that STARD13 mediates the association of WWP1 with the GTPase RhoA, ultimately leading to RhoA polyubiquitination and degradation. Interestingly, the WWP1/STARD13 complex is involved in the actin cytoskeleton rearrangement by preferentially targeting the active form of RhoA for degradation. These results reveal a previously unrecognized role for WWP1, which could play a key role in the migration of cancer cells during metastasis. Characterization of new regulation and action mechanisms for WWP1 should allow identifying whether WWP1 is a diagnosis biomarker in cancer and/or a new therapeutic target for the development of anticancer drugs
Książki na temat "E3 LIGASE ACTIVITY"
Barañano, Kristin W. Angelman Syndrome. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0055.
Pełny tekst źródłaCzęści książek na temat "E3 LIGASE ACTIVITY"
Ren, Hong Yu, Cam Patterson, Douglas M. Cyr i Meredith F. N. Rosser. "Reconstitution of CHIP E3 Ubiquitin Ligase Activity". W Methods in Molecular Biology, 93–103. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-295-3_8.
Pełny tekst źródłaOhtake, Fumiaki, i Shigeaki Kato. "The E3 Ubiquitin Ligase Activity of Transcription Factor AHR Permits Nongenomic Regulation of Biological Pathways". W The AH Receptor in Biology and Toxicology, 143–56. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118140574.ch10.
Pełny tekst źródłaTieroyaare Dongdem, Julius, i Cletus Adiyaga Wezena. "Functional Significance of the E3 Ubiquitin Ligases in Disease and Therapeutics". W Hydrolases [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.100534.
Pełny tekst źródłaSong, Jie, i Maréne Landström. "Lys63-Linked Polyubiquitination of Transforming Growth Factor β Type I Receptor (TβRI) Specifies Oncogenic Signaling". W Ubiquitin - Proteasome Pathway. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93065.
Pełny tekst źródła"Molecular Investigation of Protein–Protein Interaction Candidates Related to the Mammalian Brain". W Cheminformatics and Bioinformatics at the Interface with Systems Biology, 81–107. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781839166037-00081.
Pełny tekst źródłaSandmann, Alexander, i Nico Dissmeyer. "In vitro autoubiquitination activity of E3 ubiquitin ligases of the N-degron pathway". W Methods in Enzymology. Elsevier, 2023. http://dx.doi.org/10.1016/bs.mie.2023.02.014.
Pełny tekst źródłaStreszczenia konferencji na temat "E3 LIGASE ACTIVITY"
Lin, Huan-Yu, Shiu-Ting Lin, Mei-June Wang i Jeou-Yuan Chen. "Abstract 1699: Suppressor of cytokine signaling 6 (SOCS6) promotes mitochondrial fission through E3 ubiquitin ligase complex activity." W Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-1699.
Pełny tekst źródłaShin, Jun-Wan, i Young-Joon Surh. "Abstract B67: Curcumin induces stabilization of Nrf2 protein by decreasing the activity of Cullin3-Rbx1 E3 ubiquitin ligase". W Abstracts: AACR International Conference on Frontiers in Cancer Prevention Research‐‐ Oct 22-25, 2011; Boston, MA. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1940-6207.prev-11-b67.
Pełny tekst źródłaShukla, Shirish, Felicia Gray, Weijiang Ying, Hyoje Cho, Qingjie Zhao, Hongzhi Miao, Hongzhi Miao i in. "Abstract 50: Small molecule Ring1B-Bmi1 inhibitor attenuates PRC1 E3 ligase activity and targets leukemia stem cells self-renewal". W Abstracts: Second AACR Conference on Hematologic Malignancies: Translating Discoveries to Novel Therapies; May 6-9, 2017; Boston, MA. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1557-3265.hemmal17-50.
Pełny tekst źródłaQian, Tingting, Jeong-Yeon Lee, Hyun-Jun Kim i Gu Kong. "Abstract LB-96: Id1 enhances RING1b E3 ubiquitin ligase activity through the Mel-18/Bmi-1 polycomb group complex". W Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-lb-96.
Pełny tekst źródłaQi, Jianfei, Manisha Tripathi, Natasha Sahgal, Ladan Fazil, Susan Ettinger, William J. Placzek, Giuseppina Claps i in. "Abstract 5456: The E3 ubiquitin ligase Siah2 regulates the androgen receptor activity and contributes to castration-resistant prostate cancer." W Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-5456.
Pełny tekst źródłaYu, Yonghui, Jinyi Liu, Dongyun Zhang, Wenjing Luo, Jianxiu Yu, Jingxia Li, Xinhai Zhang, Jingyuan Chen i Chuanshu Huang. "Abstract 4312: E3 ligase activity of XIAP RING domain is required for XIAP-mediated cancer cell migration but not for its RhoGDI binding activity". W Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-4312.
Pełny tekst źródłaShukla, Shirish, Qingjie Zhao, Weijang Ying, Felicia Gray, Kelly Vandenberg, George Lund, Bohdan Boytsov, Shihan He, Jolanta Grembecka i Tomasz Cierpicki. "Abstract 3520: Small molecule inhibitors of ring1B-Bmi1 E3 ligase target polycomb repressive complex 1 activity and regulate cell proliferation". W Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3520.
Pełny tekst źródłaBanh, Robert S., Caterina Iorio, Richard Marcotte, Yang Xu, Dan Cojocari, Anas Abdel Rahman, Judy Pawling i in. "Abstract LB-302: PTP1B regulates the Moyamoya disease-associated E3 ligase, RNF213 and cellular dioxygenase activity to allow breast tumor survival in hypoxia". W Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-lb-302.
Pełny tekst źródłaSosin, Angela M., Angelika M. Burger, Dajun Yang, Ramzi M. Mohammad i Ayad Al-Katib. "Abstract 4516: A new class of MDM2 inhibitors cause growth inhibition and stabilize wt p53 in lymphoma cells but do not interfere with MDM2 E3 ligase activity". W Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-4516.
Pełny tekst źródłaZhao, Hongling, Vineeth Sukrithan, Niloy Iqbal, Cari Nicholas, Yingjiao Xue, Joseph Locker, Juntao Zou, Liang Zhu i Edward L. Schwartz. "Abstract 1060: Genetic and pharmacologic inhibition of Skp2, an E3 ubiquitin ligase and RB1-target, has antitumor activity in RB1-deficient human and mouse small cell lung cancer (SCLC)". W Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-1060.
Pełny tekst źródła