Gotowa bibliografia na temat „Dynamical memory”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Dynamical memory”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Dynamical memory"
Ganguli, S., D. Huh i H. Sompolinsky. "Memory traces in dynamical systems". Proceedings of the National Academy of Sciences 105, nr 48 (19.11.2008): 18970–75. http://dx.doi.org/10.1073/pnas.0804451105.
Pełny tekst źródłaRehn, Martin, i Anders Lansner. "Sequence memory with dynamical synapses". Neurocomputing 58-60 (czerwiec 2004): 271–78. http://dx.doi.org/10.1016/j.neucom.2004.01.055.
Pełny tekst źródłaMitchell, Melanie. "Human Memory: A Dynamical Process". Contemporary Psychology 48, nr 3 (czerwiec 2003): 326–27. http://dx.doi.org/10.1037/000805.
Pełny tekst źródłaBoffetta, G., R. Monasson i R. Zecchina. "MEMORY RETRIEVAL IN OPTIMAL SUBSPACES". International Journal of Neural Systems 03, supp01 (styczeń 1992): 71–77. http://dx.doi.org/10.1142/s0129065792000401.
Pełny tekst źródłaAICARDI, FRANCESCA, i SERGIO INVERNIZZI. "MEMORY EFFECTS IN DISCRETE DYNAMICAL SYSTEMS". International Journal of Bifurcation and Chaos 02, nr 04 (grudzień 1992): 815–30. http://dx.doi.org/10.1142/s0218127492000458.
Pełny tekst źródłaKlinshov, Vladimir V., i Vladimir I. Nekorkin. "Dynamical model of working memory system". Neuroscience Research 58 (styczeń 2007): S44. http://dx.doi.org/10.1016/j.neures.2007.06.259.
Pełny tekst źródłaBrianzoni, Serena, Cristiana Mammana, Elisabetta Michetti i Francesco Zirilli. "A Stochastic Cobweb Dynamical Model". Discrete Dynamics in Nature and Society 2008 (2008): 1–18. http://dx.doi.org/10.1155/2008/219653.
Pełny tekst źródłaOliveira, H. S., A. S. de Paula i M. A. Savi. "Dynamical Jumps in a Shape Memory Alloy Oscillator". Shock and Vibration 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/656212.
Pełny tekst źródłaMohapatra, Anushaya, i William Ott. "Memory loss for nonequilibrium open dynamical systems". Discrete & Continuous Dynamical Systems - A 34, nr 9 (2014): 3747–59. http://dx.doi.org/10.3934/dcds.2014.34.3747.
Pełny tekst źródłaOtt, William, Mikko Stenlund i Lai-Sang Young. "Memory loss for time-dependent dynamical systems". Mathematical Research Letters 16, nr 3 (2009): 463–75. http://dx.doi.org/10.4310/mrl.2009.v16.n3.a7.
Pełny tekst źródłaRozprawy doktorskie na temat "Dynamical memory"
Liu, Yuxi. "Dynamical Activity Patterns of High-frequency Oscillations and Their Functional Roles in Neural Circuits". Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23236.
Pełny tekst źródłaKropff, Emilio. "Statistical and dynamical properties of large cortical network models: insights into semantic memory and language". Doctoral thesis, SISSA, 2007. http://hdl.handle.net/20.500.11767/4639.
Pełny tekst źródłaRehn, Martin. "Aspects of memory and representation in cortical computation". Doctoral thesis, KTH, Numerisk Analys och Datalogi, NADA, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4161.
Pełny tekst źródłaIn this thesis I take a modular approach to cortical function. I investigate how the cerebral cortex may realise a number of basic computational tasks, within the framework of its generic architecture. I present novel mechanisms for certain assumed computational capabilities of the cerebral cortex, building on the established notions of attractor memory and sparse coding. A sparse binary coding network for generating efficient representations of sensory input is presented. It is demonstrated that this network model well reproduces the simple cell receptive field shapes seen in the primary visual cortex and that its representations are efficient with respect to storage in associative memory. I show how an autoassociative memory, augmented with dynamical synapses, can function as a general sequence learning network. I demonstrate how an abstract attractor memory system may be realised on the microcircuit level -- and how it may be analysed using tools similar to those used experimentally. I outline some predictions from the hypothesis that the macroscopic connectivity of the cortex is optimised for attractor memory function. I also discuss methodological aspects of modelling in computational neuroscience.
QC 20100916
Bhalala, Smita Ashesh 1966. "Modified Newton's method for supervised training of dynamical neural networks for applications in associative memory and nonlinear identification problems". Thesis, The University of Arizona, 1991. http://hdl.handle.net/10150/277969.
Pełny tekst źródłaBauer, Michael. "Dynamical characterization of Markov processes with varying order". Master's thesis, [S.l. : s.n.], 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200900153.
Pełny tekst źródłaAbbs, Brandon Robert. "The temporal dynamics of auditory memory for static and dynamic sounds". Diss., University of Iowa, 2008. http://ir.uiowa.edu/etd/4.
Pełny tekst źródłaWilliams, Peter. "Dynamic memory for design". Thesis, The University of Sydney, 1995. https://hdl.handle.net/2123/27472.
Pełny tekst źródłaSperens, Martin. "Dynamic Memory Managment in C++". Thesis, Luleå tekniska universitet, Datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76611.
Pełny tekst źródłaBisht, Pawas. "Disaster and the dynamics of memory". Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/14184.
Pełny tekst źródłaWu, Jiaming. "A modular dynamic Neuro-Synaptic platform for Spiking Neural Networks". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP145.
Pełny tekst źródłaBiological and artificial neural networks share a fundamental computational unit: the neuron. These neurons are coupled by synapses, forming complex networks that enable various functions. Similarly, neuromorphic hardware, or more generally neuro-computers, also require two hardware elements: neurons and synapses. In this work, we introduce a bio-inspired spiking Neuro-Synaptic hardware unit, fully implemented with conventional electronic components. Our hardware is based on a textbook theoretical model of the spiking neuron, and its synaptic and membrane currents. The spiking neuron is fully analog and the various models that we introduced are defined by their hardware implementation. The neuron excitability is achieved through a memristive device made from off-the-shelf electronic components. Both synaptic and membrane currents feature tunable intensities and bio-mimetic dynamics, including excitatory and inhibitory currents. All model parameters are adjustable, allowing the system to be tuned to bio-compatible timescales, which is crucial in applications such as brain-machine interfaces. Building on these two modular units, we demonstrate various basic neural network motifs (or neuro-computing primitives) and show how to combine these fundamental motifs to implement more complex network functionalities, such as dynamical memories and central pattern generators. Our hardware design also carries potential extensions for integrating oxide-based memristors (which are widely studied in material science),or porting the design to very large-scale integration (VLSI) to implement large-scale networks. The Neuro-Synaptic unit can be considered as a building block for implementing spiking neural networks of arbitrary geometry. Its compact and modular design, as well as the wide availability of ordinary electronic components, makes our approach an attractive platform for building neural interfaces in medical devices, robotics, and artificial intelligence systems such as reservoir computing
Książki na temat "Dynamical memory"
Irene, Dorfman, Fokas A. S. 1952- i Gelʹfand I. M, red. Algebraic aspects of integrable systems: In memory of Irene Dorfman. Boston: Birkäuser, 1997.
Znajdź pełny tekst źródłaBlokh, Alexander, Leonid Bunimovich, Paul Jung, Lex Oversteegen i Yakov Sinai, red. Dynamical Systems, Ergodic Theory, and Probability: in Memory of Kolya Chernov. Providence, Rhode Island: American Mathematical Society, 2017. http://dx.doi.org/10.1090/conm/698.
Pełny tekst źródłaV, Anosov D., Stepin A. M i Bolibruch Andrej Andreevič, red. Dynamical systems and related problems of geometry: Collected papers dedicated to the memory of academician Andrei Andreevich Bolibrukh. Moscow: Maik Nauka/Interperiodica, 2004.
Znajdź pełny tekst źródłaMotorola. Dynamic RAMs & memory modules. Wyd. 2. Phoenix, AZ: Motorola, 1996.
Znajdź pełny tekst źródłaKorostelina, Karina V. Memory Sites and Conflict Dynamics. London: Routledge, 2024. http://dx.doi.org/10.4324/9781003497332.
Pełny tekst źródłaMotorola. Dynamic RAMs and memory modules. Phoenix, AZ: Motorola, 1993.
Znajdź pełny tekst źródłaAtienza Alonso, David, Stylianos Mamagkakis, Christophe Poucet, Miguel Peón-Quirós, Alexandros Bartzas, Francky Catthoor i Dimitrios Soudris. Dynamic Memory Management for Embedded Systems. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10572-7.
Pełny tekst źródłaIncorporated, Advanced Micro Devices. Dynamic memory design data book/handbook. [Sunnyvale, CA]: Advanced Micro Devices, Inc., 1990.
Znajdź pełny tekst źródłaDaconta, Michael C. C++ pointers and dynamic memory management. New York: Wiley, 1995.
Znajdź pełny tekst źródłaFarkas, Keith I. Memory-system design considerations for dynamically-scheduled microprocessors. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1997.
Znajdź pełny tekst źródłaCzęści książek na temat "Dynamical memory"
Pandolfi, Luciano. "Dynamical Algorithms for Identification Problems". W Systems with Persistent Memory, 283–329. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80281-3_6.
Pełny tekst źródłaLiu, Jun, i Andrew R. Teel. "Hybrid Dynamical Systems with Finite Memory". W Recent Results on Nonlinear Delay Control Systems, 261–73. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18072-4_13.
Pełny tekst źródłaFung, C. C. Alan, K. Y. Michael Wong i Si Wu. "Dynamical Synapses Enhance Mobility, Memory and Decoding". W Advances in Cognitive Neurodynamics (III), 131–37. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-4792-0_18.
Pełny tekst źródłaCosnard, Michel, i Eric Goles Chacc. "Dynamical Properties of An Automaton with Memory". W Disordered Systems and Biological Organization, 63–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82657-3_7.
Pełny tekst źródłaBragov, A. M., L. A. Igumnov, A. Yu Konstantinov, A. K. Lomunov i A. I. Razov. "Dynamic Research of Shape Memory Alloys". W Dynamical Processes in Generalized Continua and Structures, 133–46. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11665-1_7.
Pełny tekst źródłaGrasselli, Maurizio, i Vittorino Pata. "Uniform Attractors of Nonautonomous Dynamical Systems with Memory". W Evolution Equations, Semigroups and Functional Analysis, 155–78. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8221-7_9.
Pełny tekst źródłaButaud, Pauline, Morvan Ouisse, Kévin Jaboviste, Vincent Placet i Emmanuel Foltête. "Dynamical Mechanical Thermal Analysis of Shape-Memory Polymers". W Advanced Structured Materials, 129–51. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8574-2_6.
Pełny tekst źródłaSoares, O. D. D., A. L. V. S. Lage, A. O. S. Gomes i J. C. D. M. Santos. "Dynamical Digital Memory for Holography, Moiré and E.S.P.I." W Optical Metrology, 182–98. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3609-6_16.
Pełny tekst źródłaKoopmans, Matthijs. "Investigating the Long Memory Process in Daily High School Attendance Data". W Complex Dynamical Systems in Education, 299–321. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27577-2_14.
Pełny tekst źródłaHayashi, Hatsuo, i Motoharu Yoshida. "A Memory Model Based on Dynamical Behavior of the Hippocampus". W Lecture Notes in Computer Science, 967–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30132-5_130.
Pełny tekst źródłaStreszczenia konferencji na temat "Dynamical memory"
Shen, Minghao, i Gábor Orosz. "Memory Sketching for Data-driven Prediction of Dynamical Systems". W 2024 American Control Conference (ACC), 5388–93. IEEE, 2024. http://dx.doi.org/10.23919/acc60939.2024.10645035.
Pełny tekst źródłaLoveridge, Tegan, Kai Shinbrough i Virginia O. Lorenz. "Optimal Continuous Dynamical Decoupling in N-type Atomic Ensemble Quantum Memories". W CLEO: Fundamental Science, FM3R.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fm3r.4.
Pełny tekst źródłaOtsuka, Kenju, i Jyh-Long Chern. "Factorial Dynamic Pattern Memory in Globally Coupled Lasers". W Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.thb1.
Pełny tekst źródłaGordon, Goren, i Gershon Kurizki. "Dynamical control of noisy quantum memory channels". W Microtechnologies for the New Millennium, redaktorzy Ali Serpengüzel, Gonçal Badenes i Giancarlo C. Righini. SPIE, 2007. http://dx.doi.org/10.1117/12.723952.
Pełny tekst źródłaDuda, Alexander M., i Stephen E. Levinson. "Nonlinear Dynamical Multi-Scale Model of Associative Memory". W 2010 International Conference on Machine Learning and Applications (ICMLA). IEEE, 2010. http://dx.doi.org/10.1109/icmla.2010.135.
Pełny tekst źródłaChung-Ming Ou i C. R. Ou. "Immune memory with associativity: Perspectives on dynamical systems". W 2012 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2012. http://dx.doi.org/10.1109/cec.2012.6256646.
Pełny tekst źródłaAndrianov, Serge N., i Nikolai S. Edamenko. "Geometric integration of nonlinear dynamical systems". W 2015 International Conference "Stability and Control Processes" in Memory of V.I. Zubov (SCP). IEEE, 2015. http://dx.doi.org/10.1109/scp.2015.7342048.
Pełny tekst źródłaVakhnenko, Vyacheslav O. "Dynamical realization of end-point memory in consolidated materials". W INNOVATIONS IN NONLINEAR ACOUSTICS: ISNA17 - 17th International Symposium on Nonlinear Acoustics including the International Sonic Boom Forum. AIP, 2006. http://dx.doi.org/10.1063/1.2210332.
Pełny tekst źródłaAlonso-Sanz, Ramon. "Cellular automata and other discrete dynamical systems with memory". W 2012 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2012. http://dx.doi.org/10.1109/hpcsim.2012.6266914.
Pełny tekst źródłaDavydenko, Alexander A., Natalya V. Raspopova i Sergei S. Ustimenko. "On mass simulations of dynamical models of galaxy". W 2015 International Conference "Stability and Control Processes" in Memory of V.I. Zubov (SCP). IEEE, 2015. http://dx.doi.org/10.1109/scp.2015.7342053.
Pełny tekst źródłaRaporty organizacyjne na temat "Dynamical memory"
Beri, A. C., i T. F. George. Memory Effects in Dynamical Many-Body Systems: The Isomnesic (Constant-Memory) Approximation. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1985. http://dx.doi.org/10.21236/ada154160.
Pełny tekst źródłaPerdigão, Rui A. P., i Julia Hall. Spatiotemporal Causality and Predictability Beyond Recurrence Collapse in Complex Coevolutionary Systems. Meteoceanics, listopad 2020. http://dx.doi.org/10.46337/201111.
Pełny tekst źródłaAsea, Patrick K., i Michael J. Dueker. Non-Monotonic Long Memory Dynamics in Black-Market Exchange Rates. Federal Reserve Bank of St. Louis, 1995. http://dx.doi.org/10.20955/wp.1995.003.
Pełny tekst źródłaKim, Joohee, i Marios C. Papaefthymiou. Block-Based Multi-Period Refresh for Energy Efficient Dynamic Memory. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2002. http://dx.doi.org/10.21236/ada414244.
Pełny tekst źródłaLagoudas, Dimitris C. Dynamic Behavior and Shock Absorption Properties of Porous Shape Memory Alloys. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2002. http://dx.doi.org/10.21236/ada403775.
Pełny tekst źródłaSaxena, A., A. R. Bishop, S. R. Shenoy, Y. Wu i T. Lookman. A model of shape memory materials with hierarchical twinning: Statics and dynamics. Office of Scientific and Technical Information (OSTI), lipiec 1995. http://dx.doi.org/10.2172/102295.
Pełny tekst źródłaMayas, Magda. Creating with timbre. Norges Musikkhøgskole, sierpień 2018. http://dx.doi.org/10.22501/nmh-ar.686088.
Pełny tekst źródłaD`Azevedo, E. F., i C. H. Romine. A new shared-memory programming paradigm for molecular dynamics simulations on the Intel Paragon. Office of Scientific and Technical Information (OSTI), grudzień 1994. http://dx.doi.org/10.2172/28414.
Pełny tekst źródłaD'Azevedo, E. F. A New Shared-Memory Programming Paradigm for Molecular Dynamics Simulations on the Intel Paragon. Office of Scientific and Technical Information (OSTI), styczeń 1995. http://dx.doi.org/10.2172/814063.
Pełny tekst źródłaVineyard, Craig Michael, i Stephen Joseph Verzi. A Case Study on Neural Inspired Dynamic Memory Management Strategies for High Performance Computing. Office of Scientific and Technical Information (OSTI), wrzesień 2017. http://dx.doi.org/10.2172/1396076.
Pełny tekst źródła