Gotowa bibliografia na temat „Dynamical large deviations”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Dynamical large deviations”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Dynamical large deviations"
Young, Lai-Sang. "Large deviations in dynamical systems". Transactions of the American Mathematical Society 318, nr 2 (1.02.1990): 525–43. http://dx.doi.org/10.1090/s0002-9947-1990-0975689-7.
Pełny tekst źródłaWu, Xinxing, Xiong Wang i Guanrong Chen. "On the Large Deviations Theorem of Weaker Types". International Journal of Bifurcation and Chaos 27, nr 08 (lipiec 2017): 1750127. http://dx.doi.org/10.1142/s0218127417501279.
Pełny tekst źródłaBogenschütz, Thomas, i Achim Doebler. "Large deviations in expanding random dynamical systems". Discrete & Continuous Dynamical Systems - A 5, nr 4 (1999): 805–12. http://dx.doi.org/10.3934/dcds.1999.5.805.
Pełny tekst źródłaKleptsyn, Victor, Dmitry Ryzhov i Stanislav Minkov. "Special ergodic theorems and dynamical large deviations". Nonlinearity 25, nr 11 (15.10.2012): 3189–96. http://dx.doi.org/10.1088/0951-7715/25/11/3189.
Pełny tekst źródłaKifer, Yuri. "Averaging in dynamical systems and large deviations". Inventiones Mathematicae 110, nr 1 (grudzień 1992): 337–70. http://dx.doi.org/10.1007/bf01231336.
Pełny tekst źródłaWhitelam, Stephen, Daniel Jacobson i Isaac Tamblyn. "Evolutionary reinforcement learning of dynamical large deviations". Journal of Chemical Physics 153, nr 4 (28.07.2020): 044113. http://dx.doi.org/10.1063/5.0015301.
Pełny tekst źródłaARAÚJO, VÍTOR, i ALEXANDER I. BUFETOV. "A large deviations bound for the Teichmüller flow on the moduli space of abelian differentials". Ergodic Theory and Dynamical Systems 31, nr 4 (20.07.2010): 1043–71. http://dx.doi.org/10.1017/s0143385710000349.
Pełny tekst źródłaREY-BELLET, LUC, i LAI-SANG YOUNG. "Large deviations in non-uniformly hyperbolic dynamical systems". Ergodic Theory and Dynamical Systems 28, nr 2 (kwiecień 2008): 587–612. http://dx.doi.org/10.1017/s0143385707000478.
Pełny tekst źródłaKifer, Yuri. "Large deviations in dynamical systems and stochastic processes". Transactions of the American Mathematical Society 321, nr 2 (1.02.1990): 505–24. http://dx.doi.org/10.1090/s0002-9947-1990-1025756-7.
Pełny tekst źródłaTouchette, Hugo. "Introduction to dynamical large deviations of Markov processes". Physica A: Statistical Mechanics and its Applications 504 (sierpień 2018): 5–19. http://dx.doi.org/10.1016/j.physa.2017.10.046.
Pełny tekst źródłaRozprawy doktorskie na temat "Dynamical large deviations"
Maroulas, Vasileios Budhiraja Amarjit. "Small noise large deviations for infinite dimensional stochastic dynamical systems". Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2008. http://dc.lib.unc.edu/u?/etd,1779.
Pełny tekst źródłaTitle from electronic title page (viewed Sep. 16, 2008). " ... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Statistics and Operations Research Statistics." Discipline: Statistics and Operations Research; Department/School: Statistics and Operations Research.
van, Horssen Merlijn. "Large deviations and dynamical phase transitions for quantum Markov processes". Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/27741/.
Pełny tekst źródłaDe, Oliveira Gomes André. "Large Deviations Studies for Small Noise Limits of Dynamical Systems Perturbed by Lévy Processes". Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19118.
Pełny tekst źródłaThis thesis deals with applications of Large Deviations Theory to different problems of Stochastic Dynamics and Stochastic Analysis concerning Jump Processes. The first problem we address is the first exit time from a fixed bounded domain for a certain class of exponentially light jump diffusions. According to the lightness of the jump measure of the driving process, we derive, when the source of the noise vanishes, the asymptotic behavior of the law and of the expected value of first exit time. In the super-exponential regime the law of the first exit time follows a large deviations scale and in the sub-exponential regime it follows a moderate deviations one. In both regimes the first exit time is comprehended, in the small noise limit, in terms of a deterministic quantity that encodes the minimal energy the jump diffusion needs to spend in order to follow an optimal controlled path that leads to the exit. The second problem that we analyze is the small noise limit of a certain class of coupled forward-backward systems of Stochastic Differential Equations. Associated to these stochastic objects are some nonlinear nonlocal Partial Differential Equations that arise as nonlocal toy-models of Fluid Dynamics. Using a probabilistic approach and the Markov nature of these systems we study the convergence at the level of viscosity solutions and we derive a large deviations principles for the laws of the stochastic processes that are involved.
Högele, Michael [Gutachter], Peter [Gutachter] Imkeller i Dirk [Gutachter] Becherer. "Large Deviations Studies for Small Noise Limits of Dynamical Systems Perturbed by Lévy Processes / Gutachter: Michael Högele, Peter Imkeller, Dirk Becherer". Berlin : Humboldt-Universität zu Berlin, 2018. http://d-nb.info/1182541208/34.
Pełny tekst źródłaHurth, Tobias. "Limit theorems for a one-dimensional system with random switchings". Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37201.
Pełny tekst źródłaCabana, Tanguy. "Large deviations for the dynamics of heterogeneous neural networks". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066551/document.
Pełny tekst źródłaThis thesis addresses the rigorous derivation of mean-field results for the continuous time dynamics of heterogeneous large neural networks. In our models, we consider firing-rate neurons subject to additive noise. The network is fully connected, with highly random connectivity weights. Their variance scales as the inverse of the network size, and thus conserves a non-trivial role in the thermodynamic limit. Moreover, another heterogeneity is considered at the level of each neuron. It is interpreted as a spatial location. For biological relevance, a model considered includes delays, mean and variance of connections depending on the distance between cells. A second model considers interactions depending on the states of both neurons at play. This last case notably applies to Kuramoto's model of coupled oscillators. When the weights are independent Gaussian random variables, we show that the empirical measure of the neurons' states satisfies a large deviations principle, with a good rate function achieving its minimum at a unique probability measure, implying averaged convergence of the empirical measure and propagation of chaos. In certain cases, we also obtained quenched results. The limit is characterized through a complex non Markovian implicit equation in which the network interaction term is replaced by a non-local Gaussian process whose statistics depend on the solution over the whole neural field. We further demonstrate the universality of this limit, in the sense that neuronal networks with non-Gaussian interconnections but sub-Gaussian tails converge towards it. Moreover, we present a few numerical applications, and discuss possible perspectives
Bouley, Angèle. "Grandes déviatiοns statistiques de l'exclusiοn en cοntact faible avec des réservοirs". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR032.
Pełny tekst źródłaThis thesis focuses on a process of exclusion in weak contact with reservoirs. More precisely, we revisit the model studied in the article "Hydrostatics and dynamical large deviations of boundary driven gradient symmetric exclusion processes" by J. Farfan, C. Landim, M. Mourragui but in the case of weak (rather than strong) contact with the reservoirs. Through this weak contact, results are modified such as the hydrodynamic limit theorem and the theorem of large dynamical deviations. The modifications of these two results are studied in this thesis in the case of dimension 1. The first part of the thesis will consist of proving the hydrodynamic limit theorem for our model, i.e. showing the convergence of the empirical measure. Based on the steps in Section 5 of the book "Scaling limits of interacting particle systems" by C. Kipnis, C. Landim, we will show that this sequence is relatively compact before studying the properties of its limit points. For each convergent subsequence, we will show that they converge to limit points that concentrate on absolutely continuous trajectories and whose densities are weak solutions of an equation that we will call the hydrodynamic equation. By demonstrating the uniqueness of weak solutions of the hydrodynamic equation, we will then have a unique limit point and the convergence of the sequence will be established. In the second part of the thesis, we will demonstrate the theorem of large dynamical deviations, i.e. that there exists a rate function I_{[0,T]}(.|\gamma) satisfying the large deviations principle for the sequence studied in the first part. After defining the rate function, we will show that it is lower semicontinuous, has compact level sets, and satisfies a lower bound and an upper bound property. One of the main challenges will be to show a density property for a set F. This will represent a significant part of this section. Moreover, to prove this density property, we will need to decompose the function I_{[0,T]}(.|\gamma) which contains boundary terms and does not have a convexity property like the rate functions of several existing models. Due to these two constraints, new regularity properties as well as a new type of decomposition will be demonstrated
Mitsudo, Tetsuya. "The Kink Dynamics and the Large Deviation for the Current in the Asymmetric Simple Exclusion Process with Open Boundary Conditions". 京都大学 (Kyoto University), 2011. http://hdl.handle.net/2433/142360.
Pełny tekst źródłaSerrao, Shannon Reuben. "Stochastic effects on extinction and pattern formation in the three-species cyclic May–Leonard model". Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/101782.
Pełny tekst źródłaDoctor of Philosophy
In the field of ecology, the cyclic predator-prey patterns in a food web are relevant yet independent to the hierarchical archetype. We study the paradigmatic cyclic May--Leonard model of three species, both analytically and numerically. First, we employ well--established techniques in large-deviation theory to study the extinction of populations induced by large but rare fluctuations. In the zero--dimensional version of the model, we compare the mean time to extinction computed from the theory to numerical simulations. Secondly, we study the stochastic spatial version of the May--Leonard model and show that for values close to the Hopf bifurcation, in the limit of small fluctuations, we can map the coarse-grained description of the model to the Complex Ginsburg Landau Equation, with stochastic noise corrections. Finally, we explore the induction of ecodiversity through spatio-temporal spirals in the asymmetric version of the May--Leonard model, which is otherwise inclined to reach an extinction state. This is accomplished by coupling to a symmetric May-Leonard counterpart on a two-dimensional lattice. The coupled system creates conditions for spiral formation in the asymmetric subsystem, thus precluding extinction.
Guarnieri, G. "Characterizzation of dynamical properties of non-Markovian open quantum systems". Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/2434/468262.
Pełny tekst źródłaKsiążki na temat "Dynamical large deviations"
Dolgopyat, D., Y. Pesin, M. Pollicott i L. Stoyanov, red. Hyperbolic Dynamics, Fluctuations and Large Deviations. Providence, Rhode Island: American Mathematical Society, 2015. http://dx.doi.org/10.1090/pspum/089.
Pełny tekst źródła1951-, Durrett Richard, American Mathematical Society, Institute of Mathematical Statistics i Society for Industrial and Applied Mathematics., red. Particle systems, random media, and large deviations. Providence, R.I: American Mathematical Society, 1985.
Znajdź pełny tekst źródłaHerrmann, Samuel. Stochastic resonance: A mathematical approach in the small noise limit. Providence, Rhode Island: American Mathematical Society, 2014.
Znajdź pełny tekst źródłaOlivieri, Enzo, i Maria Eulália Vares. Large Deviations and Metastability. Cambridge University Press, 2005.
Znajdź pełny tekst źródłaOlivieri, Enzo, i Maria Eulália Vares. Large Deviations and Metastability. Cambridge University Press, 2009.
Znajdź pełny tekst źródłaOlivieri, Enzo, i Maria Eulália Vares. Large Deviations and Metastability. Cambridge University Press, 2005.
Znajdź pełny tekst źródłaDoran, B., Enzo Olivieri, Maria Eulália Vares, M. Ismail i G. C. Rota. Large Deviations and Metastability. Cambridge University Press, 2005.
Znajdź pełny tekst źródłaHyperbolic dynamics, fluctuations, and large deviations. Providence, Rhode Island: American Mathematical Society, 2015.
Znajdź pełny tekst źródłaVulpiani, Angelo, Massimo Cencini, Fabio Cecconi, Andrea Puglisi i Davide Vergni. Large Deviations in Physics: The Legacy of the Law of Large Numbers. Springer London, Limited, 2014.
Znajdź pełny tekst źródłaLarge Deviations in Physics: The Legacy of the Law of Large Numbers. Springer, 2014.
Znajdź pełny tekst źródłaCzęści książek na temat "Dynamical large deviations"
Nicolis, G. "Dynamical Basis of Large Deviations and Power Laws in Complex Systems". W Nonlinear Evolution of Spatial Economic Systems, 272–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78463-7_12.
Pełny tekst źródłaHerrmann, Samuel, Peter Imkeller, Ilya Pavlyukevich i Dierk Peithmann. "Large deviations and transitions between meta-stable states of dynamical systems with small noise and weak inhomogeneity". W Mathematical Surveys and Monographs, 133–76. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/surv/194/04.
Pełny tekst źródłaLopes, Artur. "Entropy, Pressure and Large Deviation". W Cellular Automata, Dynamical Systems and Neural Networks, 79–146. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-017-1005-3_3.
Pełny tekst źródłaJuneja, Sandeep. "Dynamic Portfolio Credit Risk and Large Deviations". W Econophysics and Sociophysics: Recent Progress and Future Directions, 41–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47705-3_3.
Pełny tekst źródłaBen Arous, Gérard, i Peter Laurence. "Second Order Expansion for Implied Volatility in Two Factor Local Stochastic Volatility Models and Applications to the Dynamic $$\lambda $$ -Sabr Model". W Large Deviations and Asymptotic Methods in Finance, 89–136. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11605-1_4.
Pełny tekst źródłaBassler, Kevin E., i Maya Paczuski. "Cellular Model of Superconducting Vortex Dynamics". W Complexity from Microscopic to Macroscopic Scales: Coherence and Large Deviations, 215–27. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0419-0_12.
Pełny tekst źródłaSkjeltorp, A. T. "When Topology Meets Dynamics: Braids of Particle Motion and Chirality". W Complexity from Microscopic to Macroscopic Scales: Coherence and Large Deviations, 137–49. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0419-0_8.
Pełny tekst źródłaNemoto, Takahiro. "Common Scaling Functions in Dynamical and Quantum Phase Transitions". W Phenomenological Structure for the Large Deviation Principle in Time-Series Statistics, 41–76. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-811-3_3.
Pełny tekst źródłaGentz, Barbara. "Metastability in randomly perturbed dynamical systems: Beyond large-deviation theory". W Spectral Structures and Topological Methods in Mathematics, 107–28. Zuerich, Switzerland: European Mathematical Society Publishing House, 2019. http://dx.doi.org/10.4171/197-1/5.
Pełny tekst źródłaTakahashi, Yoichiro. "Classification of chaos and a large deviation theory for compact dynamical systems". W Lecture Notes in Economics and Mathematical Systems, 271–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-48719-4_22.
Pełny tekst źródłaStreszczenia konferencji na temat "Dynamical large deviations"
Tailleur, Julien, Vivien Lecomte, Joaquín Marro, Pedro L. Garrido i Pablo I. Hurtado. "Simulation of large deviation functions using population dynamics". W MODELING AND SIMULATION OF NEW MATERIALS: Proceedings of Modeling and Simulation of New Materials: Tenth Granada Lectures. AIP, 2009. http://dx.doi.org/10.1063/1.3082284.
Pełny tekst źródłaZhang, Qian, Shenren Xu, Dejun Meng, Dingxi Wang i Xiuquan Huang. "Efficient Quantification of Aerodynamic Performance Uncertainty due to Geometric Variability Using an Adjoint Method". W ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/gt2024-127703.
Pełny tekst źródłaCoria, Pablo, Victor Devincenti i Maivy Orozco. "Well Monitoring New Concept Based on Artificial Lift Power Indicators, Identifying Failures and Minimizing Energy Consumption Costs Due to System Inefficiency". W Middle East Oil, Gas and Geosciences Show. SPE, 2023. http://dx.doi.org/10.2118/213680-ms.
Pełny tekst źródłaStephan, Gideon A., Sybrand J. Van der Spuy i Chris Meyer. "Development of a Custom Mesh Generation Tool for Low Solidity Axial Flow Fans". W ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/gt2023-102862.
Pełny tekst źródłaThakur, Atul, Petr Svec i Satyandra K. Gupta. "Generation of State Transition Models Using Simulations for Unmanned Sea Surface Vehicle Trajectory Planning". W ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48624.
Pełny tekst źródłaSchilter, Arlette L., Denise A. McKay i Anna G. Stefanopoulou. "Parameterization of Fuel Cell Stack Voltage: Issues on Sensitivity, Cell-to Cell Variation, and Transient Response". W ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97177.
Pełny tekst źródłaSahay, Chittaranjan, i Suhash Ghosh. "Understanding Surface Form Error: Beyond the GD&T Circularity/Roundness or Cylindricity Callout". W ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-109694.
Pełny tekst źródłaKim, David Donghyun, i Brian Anthony. "Design and Fabrication of Desktop Fiber Manufacturing Kit for Education". W ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5226.
Pełny tekst źródłaIsazadeh, Amin, Sreetam Bhaduri, Davide Ziviani i David E. Claridge. "Dynamics of Bubble Growth and Collapse Under Pressure Perturbation". W ASME 2024 Fluids Engineering Division Summer Meeting collocated with the ASME 2024 Heat Transfer Summer Conference and the ASME 2024 18th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/fedsm2024-131340.
Pełny tekst źródłaTanaka, Shinsuke, Seok-Hwan Jeong, Ayahito Uetake, Susumu Yamazaki i Ken Morito. "Monolithically-integrated 8:1 SOA gate switch with small gain deviation and large input power dynamic range for WDM signals". W 2010 22nd International Conference on Indium Phosphide and Related Materials (IPRM). IEEE, 2010. http://dx.doi.org/10.1109/iciprm.2010.5515990.
Pełny tekst źródłaRaporty organizacyjne na temat "Dynamical large deviations"
Budhiraja, Amarjit, Paul Dupuis i Vasileios Maroulas. Large Deviations for Infinite Dimensional Stochastic Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, marzec 2007. http://dx.doi.org/10.21236/ada476159.
Pełny tekst źródłaLinker, Raphael, Murat Kacira, Avraham Arbel, Gene Giacomelli i Chieri Kubota. Enhanced Climate Control of Semi-arid and Arid Greenhouses Equipped with Fogging Systems. United States Department of Agriculture, marzec 2012. http://dx.doi.org/10.32747/2012.7593383.bard.
Pełny tekst źródła