Gotowa bibliografia na temat „Dynamical filtrations”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Dynamical filtrations”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Dynamical filtrations"
Bartłomiejczyk, P., i Z. Dzedzej. "Index filtrations and Morse decompositions for discrete dynamical systems". Annales Polonici Mathematici 72, nr 1 (1999): 51–70. http://dx.doi.org/10.4064/ap-72-1-51-70.
Pełny tekst źródłaGordin, M. I. "Double extensions of dynamical systems and constructing mixing filtrations". Journal of Mathematical Sciences 99, nr 2 (kwiecień 2000): 1053–60. http://dx.doi.org/10.1007/bf02673626.
Pełny tekst źródłaJiao, Rui, Wei Liu i Yijun Hu. "The Optimal Consumption, Investment and Life Insurance for Wage Earners under Inside Information and Inflation". Mathematics 11, nr 15 (5.08.2023): 3415. http://dx.doi.org/10.3390/math11153415.
Pełny tekst źródłaKCHIA, YOUNES, i PHILIP PROTTER. "PROGRESSIVE FILTRATION EXPANSIONS VIA A PROCESS, WITH APPLICATIONS TO INSIDER TRADING". International Journal of Theoretical and Applied Finance 18, nr 04 (czerwiec 2015): 1550027. http://dx.doi.org/10.1142/s0219024915500272.
Pełny tekst źródłaAtamanyuk, Volodymyr, i Yaroslav Gumnytskyi. "Mass Exchange Dynamics During the Second Filtration Drying Period". Chemistry & Chemical Technology 3, nr 2 (15.06.2009): 129–37. http://dx.doi.org/10.23939/chcht03.02.129.
Pełny tekst źródłaRazvan, M. R. "On Conley's fundamental theorem of dynamical systems". International Journal of Mathematics and Mathematical Sciences 2004, nr 26 (2004): 1397–401. http://dx.doi.org/10.1155/s0161171204202125.
Pełny tekst źródłaSavrassov, Ju S. "Algorithms of filtration and extrapolation for discrete-time dynamical systems". Acta Applicandae Mathematicae 30, nr 3 (marzec 1993): 193–263. http://dx.doi.org/10.1007/bf00995471.
Pełny tekst źródłaDuda, Zdzisław. "Hierarchical filtration for distributed linear multisensor systems". Archives of Control Sciences 22, nr 4 (1.12.2012): 507–18. http://dx.doi.org/10.2478/v10170-011-0038-7.
Pełny tekst źródłaH.Z, Igamberdiev, i Kholodzhayev B.A. "ALGORITHMS FOR SUSTAINABLE RECOVERY OF INPUT INFLUENCE ON THE BASIS OF DYNAMIC FILTRATION METHODS". International Journal of Psychosocial Rehabilitation 24, nr 03 (18.02.2020): 232–39. http://dx.doi.org/10.37200/ijpr/v24i3/pr200774.
Pełny tekst źródłaBang, Jong-Geun, i Yoong-Sup Yoon. "Analysis of Filtration Performance by Brownian Dynamics". Transactions of the Korean Society of Mechanical Engineers B 33, nr 10 (1.10.2009): 811–19. http://dx.doi.org/10.3795/ksme-b.2009.33.10.811.
Pełny tekst źródłaRozprawy doktorskie na temat "Dynamical filtrations"
Benzoni, Séverin. "Classification des filtrations dynamiques et étude des systèmes d'entropie positive". Electronic Thesis or Diss., Normandie, 2024. https://theses.hal.science/tel-04835404.
Pełny tekst źródłaIn this thesis, we explore the possible structures of measure preserving dynamical systems of the form $\bfX :=(X, \A, \mu, T)$ and their factor $\s$-algebras $\B \subset \A$. The first two chapters investigate various ways in which a factor $\s$-algebra $\B$ can sit in a dynamical system $\bfX :=(X, \A, \mu, T)$, i.e. we study some possible structures of the \emph{extension} $\A \arr \B$. In the first chapter, we consider the concepts of \emph{super-innovations} and \emph{standardness} of extensions, which are inspired from the theory of filtrations. An important focus of our work is the introduction of the notion of \emph{confined extensions}, which first interested us because they have no super-innovation. We give several examples and study additional properties of confined extensions, including several lifting results. Then, we show our main result: the existence of non-standard extensions. Finally, this result finds an application to the study of dynamical filtrations, i.e. filtrations of the form $(\F_n)_{n \leq 0}$ such that each $\F_n$ is a factor $\s$-algebra. We show that there exist \emph{non-standard I-cosy dynamical filtrations}.The second chapter furthers the study of confined extensions by finding a new kind of such extensions, in the setup of Poisson suspensions: we take an infinite $\s$-finite measure-preserving dynamical system $(X, \mu, T)$ and a compact extension $(X \times G, \mu \otimes m_G, T_\phi)$, then we consider the corresponding Poisson extension $((X \times G)^*, (\mu \otimes m_G)^*, (T_\phi)_*) \to (X^*, \mu^*, T_*)$. We give conditions under which that extension is confined and build an example which fits those conditions.Lastly, the third chapter focuses on a family of dynamical filtrations: \emph{weak Pinsker filtrations}. The existence of those filtrations on any ergodic system comes from a recent result by Austin \cite{austin}, and they present themselves as a potential tool to describe positive entropy systems. We explore the links between the asymptotic structure of weak Pinsker filtrations and the properties of the underlying dynamical system. Naturally, we also ask whether, on a given system, the structure of weak Pinsker filtrations is unique up to isomorphism. We give a partial answer, in the case where the underlying system is Bernoulli. We conclude our work by giving two explicit examples of weak Pinsker filtrations
Lanthier, Paul. "Aspects ergodiques et algébriques des automates cellulaires". Thesis, Normandie, 2020. http://www.theses.fr/2020NORMR034.
Pełny tekst źródłaThe first part of this manuscript falls within the framework of probability theory, and is devoted to the study of filtrations generated by some cellular automata. We study two versions of an algebraic automaton acting on configurations whose states take values in a finite Abelian group: one is deterministic, and consists in adding the states of two consecutive cells, and the second is a random perturbation of the first one. From these automata, random Markovian processes are constructed and the filtrations generated by these processes are studied. Using the I-cosiness criterion, we show that the two filtrations are standard in the sense developed by Vershik. However, cellular automata have the particularity of commuting with the coordinate shift operator. In this thesis, we introduce a new classification of the filtrations called "dynamic" which takes into account the action of this transformation. Filtrations are no longer defined on probability spaces but on dynamical systems, and are in this case "factor" filtrations: each sigma-algebra is invariant by the dynamics of the system. The counterpart of standardity from the dynamic point of view is studied. This creates a necessary criterion for dynamic standardity called "dynamic I-cosiness". The question of whether the dynamic I-cosiness is sufficient remains open, but a first result in this direction is given, showing that a strengthened version of the dynamic I-cosiness leads to dynamic standardity. By establishing that it does not satisfy the criterion of dynamic I-cosiness, it is proved that the factor filtration generated by the deterministic automaton is not dynamically standard, and therefore that the dynamic classification of the filtrations differs from the classification developed by Vershik. The probabilistic automaton depends on an error parameter, and it is shown by a percolation argument that the factor filtration generated by this automaton is dynamically standard for large enough values of this parameter. It is conjectured that it will not be dynamically standard for very small values of this parameter. The second part of this manuscript, more algebraic, has its origin in a musical problem, linked to the calculation of intervals in a periodic melodic line. The work presented here continues the research of the Romanian composer Anatol Vieru and of Moreno Andreatta and Dan Vuza, but in an original way from the point of view of cellular automata. We study the action on periodic sequences of two algebraic cellular automata, one of which is identical to that of the first part. The questions on the characterization of reducible and reproducible sequences as well as the associated times have been deepened and improved for these two automata. The calculation of preimages and images via the two automata was explained. The question of the evolution of the periods was treated with the creation of a tool called "characteristic" which allows to describe and control the evolution of the period in negative times. Simulations show that the evolution of the periods when the preimages are drawn at random follows an almost regular pattern, and the explanation of this phenomenon remains an open question. The mathematical results of this second part have been used in the "Automaton" module of a free composing software called "UPISketch ». This module allows a composer to create melodic lines by iterating images or taking successive preimages of a starting melodic line
Khan, Muhammad Waleed. "Dynamic filtration at soil-geotextile interfaces". Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/39882/.
Pełny tekst źródłaTurkson, Abraham K. "Electro-ultrafiltration with rotating dynamic membranes". Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=72036.
Pełny tekst źródłaFour dynamic membranes, Zr(IV) oxide, calcium oleate, poly-2-vinylpyridine and cadmium sulfide, were used to filter bovine serum albumin (BSA) in a disodium phosphate solution at pH = 8 and Prussian blue in distilled water. Prussian blue is a particle of 0.01(mu)m diameter with a zeta potential of -41mV while BSA is a macromolecule of 69,000 molecular weight, a Stokes-Einstein radius of 0.0038(mu)m and a zeta potential of -23.3mV at pH = 8. For BSA, the flux declined with time while the rejection increased. Filtrate fluxes increased with rotation rate and electric field and declined with concentration for both feeds. The flux declined beyond N = 2000rpm and was constant above C(,0) = 5.0wt%. For Prussian blue, the rejection was greater than 90% at all levels of E, N and C(,0). For BSA, the rejection increased with rotation rate and declined with concentration. The BSA rejection declined above N = 2000rpm and was constant beyond C(,0) = 0.5wt%.
A mathematical model was derived to predict the time variation of filtrate flux and a rejection model was used to predict the effect of surface concentration on BSA rejection.
Schousboe, Frederik Carl. "Media Velocity Considerations in Pleated Air Filtration". Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6632.
Pełny tekst źródłaWang, Yuyan. "Simulation of pulsatile flow in baffled permeable channel for membrane filtration system". Thesis, University of Bath, 1993. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332793.
Pełny tekst źródłaFLEISCHMAN, GREGORY JOSEPH. "FLUID FILTRATION FROM CAPILLARY NETWORKS (MICROCIRCULATION, MATHEMATICAL MODELING)". Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187998.
Pełny tekst źródłaCao, Shiya. "Analysis of Household Water Filtration in China: A System Dynamics Model". Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1268.
Pełny tekst źródłaArthur, Kevin Gordon. "An experimental and theoretical study of the filtration characteristics of water-based drilling muds". Thesis, Heriot-Watt University, 1986. http://hdl.handle.net/10399/1082.
Pełny tekst źródłaRoberts, Mark. "Assessment of glomerular dynamics in human pregnancy using theoretical analysis and dextran sieving coefficients". Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336811.
Pełny tekst źródłaKsiążki na temat "Dynamical filtrations"
Klotz, Dietmar. Berechnete Durchlässigkeiten handelsüblicher Brunnenfilterrohre und Kunststoff-Kiesbelagfilter (Stand 1990). Neuherberg: GSF-Forschungszentrum für Umwelt und Gesundheit, 1991.
Znajdź pełny tekst źródłaJohn, Harlim, red. Filtering complex turbulent systems. Cambridge: Cambridge University Press, 2012.
Znajdź pełny tekst źródłaV, Panfilova I., red. Osrednennye modeli filtrat͡s︡ionnykh prot͡s︡essov s neodnorodnoĭ vnutrenneĭ strukturoĭ. Moskva: "Nauka", 1996.
Znajdź pełny tekst źródłaPankov, V. N. (Viktor Nikolaevich) i Panʹko, S. V. (Sergeĭ Vasilʹevich), red. Matematicheskai︠a︡ teorii︠a︡ t︠s︡elikov ostatochnoĭ vi︠a︡zkoplastichnoĭ nefti. Tomsk: Izd-vo Tomskogo universiteta, 1989.
Znajdź pełny tekst źródłaMazo, Aleksandr, i Konstantin Potashev. The superelements. Modeling of oil fields development. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1043236.
Pełny tekst źródłaEspedal, M. S. Filtration in porous media and industrial application: Lectures given at the 4th session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy, August 24-29, 1998. Redaktorzy Fasano A, Mikelić A i Centro internazionale matematico estivo. Berlin: Springer, 2000.
Znajdź pełny tekst źródłaEndlich, Karlhans, i Rodger Loutzenhiser. Tubuloglomerular feedback, renal autoregulation, and renal protection. Redaktor Neil Turner. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0209.
Pełny tekst źródłaCharry, Luisa, Pranav Gupta i Vimal Thakoor. Introducing a Semi-Structural Macroeconomic Model for Rwanda. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198785811.003.0018.
Pełny tekst źródłaAndrle, Michal, Andrew Berg, R. Armando Morales, Rafael Portillo i Jan Vlcek. On the Sources of Inflation in Kenya. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198785811.003.0015.
Pełny tekst źródłaEspedal, M. S., i A. Mikelic. Filtration in Porous Media and Industrial Application: Lectures given at the 4th Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held ... Mathematics / Fondazione C.I.M.E., Firenze). Springer, 2001.
Znajdź pełny tekst źródłaCzęści książek na temat "Dynamical filtrations"
Shub, Michael. "Filtrations". W Global Stability of Dynamical Systems, 8–12. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4757-1947-5_2.
Pełny tekst źródłaShub, Michael. "Sequences of Filtrations". W Global Stability of Dynamical Systems, 13–19. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4757-1947-5_3.
Pełny tekst źródłaÇetin, Umut, i Albina Danilova. "Static Markov Bridges and Enlargement of Filtrations". W Dynamic Markov Bridges and Market Microstructure, 81–117. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8835-8_4.
Pełny tekst źródłaSpitzenberger, Andy, Katrin Bauer i Rüdiger Schwarze. "Reactive Cleaning and Active Filtration in Continuous Steel Casting". W Multifunctional Ceramic Filter Systems for Metal Melt Filtration, 427–52. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-40930-1_17.
Pełny tekst źródłaSirbiladze, Gia. "Problems of States Estimation (Filtration) of Extremal Fuzzy Processes". W Extremal Fuzzy Dynamic Systems, 255–88. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4250-9_8.
Pełny tekst źródłaKempken, R., H. Rechtsteiner, J. Schäfer, U. Katz, O. Dick, R. Weidemeier i I. Sellick. "Dynamic Membrane Filtration in Mammalian Cell Culture Harvest". W Animal Cell Technology, 379–84. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5404-8_60.
Pełny tekst źródłaXie, Xiaomin, Wenxiang Zhang, Luhui Ding, Philippe Schmitz i Luc Fillaudeau. "Hydrodynamic Enhancement by Dynamic Filtration for Environmental Applications". W Environmental Chemistry for a Sustainable World, 243–64. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33978-4_6.
Pełny tekst źródłaRõõm, Rein, i Aarne Männik. "Acoustic Filtration in Pressure-Coordinate Models". W IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, 221–26. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0792-4_29.
Pełny tekst źródłaNicklas, Jan, Lisa Ditscherlein, Shyamal Roy, Stefan Sandfeld i Urs A. Peuker. "Microprocesses of Agglomeration, Hetero-coagulation and Particle Deposition of Poorly Wetted Surfaces in the Context of Metal Melt Filtration and Their Scale Up". W Multifunctional Ceramic Filter Systems for Metal Melt Filtration, 361–86. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-40930-1_15.
Pełny tekst źródłaBoguslavskiy, Josif A. "Identification of Parameters of Nonlinear Dynamic Systems; Smoothing, Filtration, Forecasting of State Vectors". W Dynamic Systems Models, 71–108. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-04036-3_5.
Pełny tekst źródłaStreszczenia konferencji na temat "Dynamical filtrations"
Mao, Xinyu, Irmgard Bischofberger i Anette E. Hosoi. "Poster: Manta-inspired filtration". W 77th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2024. http://dx.doi.org/10.1103/aps.dfd.2024.gfm.p2673818.
Pełny tekst źródłaErshov, Ivan A., Oleg V. Stukach, Igor V. Sychev i Igor B. Tsydenzhapov. "The Wavelet Filtration Denoising in the Raman Distributed Temperature Sensing". W 2020 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2020. http://dx.doi.org/10.1109/dynamics50954.2020.9306138.
Pełny tekst źródłaBelim, S. V., i S. B. Larionov. "The algorithm of the impulse noise filtration in images based on an algorithm of community detection in graphs". W 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239433.
Pełny tekst źródłaVan Der Zwaag, Claas H., Tor Henry Omland i Tore Vandbakk. "Dynamic Filtration: Seepage Losses on Tyrihans". W SPE International Symposium and Exhibition on Formation Damage Control. Society of Petroleum Engineers, 2012. http://dx.doi.org/10.2118/151678-ms.
Pełny tekst źródłaPeng, Shuang Jiu, i J. M. Peden. "Prediction of Filtration Under Dynamic Conditions". W SPE Formation Damage Control Symposium. Society of Petroleum Engineers, 1992. http://dx.doi.org/10.2118/23824-ms.
Pełny tekst źródłaErshov, Ivan A., Oleg V. Stukach, Nina V. Myasnikova, Igor B. Tsydenzhapov i Igor V. Sychev. "The Resolution Enhancement in the Distributed Temperature Sensor with the Extremal Filtration Method". W 2020 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2020. http://dx.doi.org/10.1109/dynamics50954.2020.9306163.
Pełny tekst źródłaVaussard, A., M. Martin, O. Konirsch i J. M. Patroni. "An Experimental Study of Drilling Fluids Dynamic Filtration". W SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1986. http://dx.doi.org/10.2118/15412-ms.
Pełny tekst źródłaLi, D., B. Rong, X. Rui i Y. Liu. "Modelling of cake filtration in centrifugal dewatering by finite difference". W 1st International Conference on Mechanical System Dynamics (ICMSD 2022). Institution of Engineering and Technology, 2022. http://dx.doi.org/10.1049/icp.2022.1791.
Pełny tekst źródłaLu, Junfeng, Yang Chu i Wen-Qiang Lu. "An Investigation for the Usability of K-K Equations for Nano Porous Membranes". W ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18088.
Pełny tekst źródłaOviroh, Peter Ozaveshe, Lesego M. Mohlala i Tien-Chien Jen. "Effects of Defects on Nanoporous Graphene and MoS2". W ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23442.
Pełny tekst źródłaRaporty organizacyjne na temat "Dynamical filtrations"
Clague, D., T. Weisgraber, J. Rockway i K. McBride. Dynamic simulation tools for the analysis and optimization of novel collection, filtration and sample preparation systems. Office of Scientific and Technical Information (OSTI), luty 2006. http://dx.doi.org/10.2172/894770.
Pełny tekst źródła