Gotowa bibliografia na temat „Dynamic meshing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Dynamic meshing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Dynamic meshing"
Xu, Rui, Jing Zhang, Jiugen Wang, Zihui Wang, Lin Xi, Renjun Li i Hao Li. "New Method to Determine Dynamic Meshing Force for Spur Gears Considering the Meshing State of Multiple Pairs of Teeth". Applied Sciences 12, nr 9 (6.05.2022): 4690. http://dx.doi.org/10.3390/app12094690.
Pełny tekst źródłaFu, Hu Dai, Jin Gang Gao i Shan Gang Wang. "Dynamic Simulation of Gear Meshing Force Based on ADAMS". Advanced Materials Research 1049-1050 (październik 2014): 867–70. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.867.
Pełny tekst źródłaWang, Xigui, Jian Zhang, Yongmei Wang, Chen Li, Jiafu Ruan i Siyuan An. "Research on Meshing Gears CIMT Design and Anti-Thermoelastic Scuffing Load-Bearing Characteristics". Materials 15, nr 6 (11.03.2022): 2075. http://dx.doi.org/10.3390/ma15062075.
Pełny tekst źródłaShan, Li Jun, Wei Dong He i Tian Min Guan. "Analysis of Nonlinear Characteristics of Double-Crank Ring-Plate-Typed Pin-Cycloid Gear Planetary Drive". Advanced Materials Research 44-46 (czerwiec 2008): 711–16. http://dx.doi.org/10.4028/www.scientific.net/amr.44-46.711.
Pełny tekst źródłaFeng, Zengming, Fuliang Suo i Yabing Cheng. "58793 MESHING MECHANISM AND DYNAMIC ANALYSIS OF NEW SILENT CHAIN(Dynamics of Machine Components)". Proceedings of the Asian Conference on Multibody Dynamics 2010.5 (2010): _58793–1_—_58793–5_. http://dx.doi.org/10.1299/jsmeacmd.2010.5._58793-1_.
Pełny tekst źródłaWang, Haiwei, Cheng Ji, Fengxia Lu, Cheng Wang i Xueyan Sun. "A Generalized Dynamic Model and Coupling Meshing Force Analysis for Planetary Gear Set Transmissions". Applied Sciences 12, nr 12 (20.06.2022): 6279. http://dx.doi.org/10.3390/app12126279.
Pełny tekst źródłaYang, Li, Wu Bao-lin i Zhu Lin-lin. "Analysis and Calculation of Double Circular Arc Gear Meshing Impact Model". Open Mechanical Engineering Journal 9, nr 1 (16.03.2015): 160–67. http://dx.doi.org/10.2174/1874155x01509010160.
Pełny tekst źródłaLiu, Xuan, Zongde Fang, Haitao Jia, Ning Zhao, Yunbo Shen, Hui Guo i Xijin Zhang. "Investigation of Load Sharing and Dynamic Load Characteristics of a Split Torque Transmission System with Double-Helical Gear Modification". Shock and Vibration 2021 (29.06.2021): 1–22. http://dx.doi.org/10.1155/2021/9912148.
Pełny tekst źródłaHu, Shengyang, Zongde Fang, Yingqiang Xu, Yabin Guan i Rui Shen. "Meshing impact analysis of planetary transmission system considering the influence of multiple errors and its effect on the load sharing and dynamic load factor characteristics of the system". Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 235, nr 1 (10.01.2021): 57–74. http://dx.doi.org/10.1177/1464419320986285.
Pełny tekst źródłaLiu, Yang, Yinghou Jiao, Shiyuan Qi, Guangbin Yu i Mengdi Du. "Study on the Nonlinear Dynamic Behavior of Rattling Vibration in Gear Systems". Machines 10, nr 12 (23.11.2022): 1112. http://dx.doi.org/10.3390/machines10121112.
Pełny tekst źródłaRozprawy doktorskie na temat "Dynamic meshing"
Worrall, Adam. "Dynamic discontinuity meshing". Thesis, University of Bristol, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246285.
Pełny tekst źródłaChambers, Steven B. "Investigation of combustive flows and dynamic meshing in computational fluid dynamics". Thesis, Texas A&M University, 2004. http://hdl.handle.net/1969.1/1324.
Pełny tekst źródłaAcikgoz, Nazmiye. "Adaptive and Dynamic Meshing Methods for Numerical Simulations". Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14521.
Pełny tekst źródłaRadovitzky, Raúl A. Ortiz Michael. "Error estimation and adaptive meshing in strongly nonlinear dynamic problems /cRaúl A. Radovitzky ; Michael Ortiz, Committee Chair". Diss., Pasadena, Calif. : California Institute of Technology, 1998. http://resolver.caltech.edu/CaltechETD:etd-11032003-113427.
Pełny tekst źródłaMoraes, Matheus de. "Validação de um modelo dinâmico realístico de um par engrenado aplicado no monitoramento de condições de transmissões /". Ilha Solteira, 2019. http://hdl.handle.net/11449/182380.
Pełny tekst źródłaResumo: Pares engrenados são elementos de transmissão de potência amplamente utilizados em máquinas e equipamentos, todavia as falhas catastróficas desses componentes são comuns e dispendiosas. A análise de vibrações está entre as técnicas de diagnóstico de defeitos incipientes utilizadas em manutenção preditiva, posto que a presença de uma falha altera o comportamento dinâmico do sistema e o estado de degradação pode ser detectado pelo monitoramento dos sinais de vibração. Na indústria atual, onde as aquisições de dados, tanto para controle de processos, quanto para o monitoramento das condições de integridade de equipamentos, são realizadas em tempo real, faz-se necessário o desenvolvimento de métodos que aumentem a confiabilidade das tomadas de decisões em relação à identificação, localização e prognóstico de falhas. O objetivo deste trabalho é desenvolver um modelo matemático de par de engrenagens que auxilie no monitoramento da condição e validar o modelo dinâmico com dados de vibração de um multiplicador de velocidades obtidos experimentalmente. Para tanto, foi elaborada uma metodologia baseada no modelo dinâmico de par engrenado com 6 graus de liberdade para simulação de sinais de vibração; nesse modelo, inclui-se erros geométricos no perfil do dente; de maneira analítica, simula-se uma a trinca do dente de uma das engrenagens que ocasiona a queda de rigidez em função do tempo; desenvolveu-se também um experimento com um multiplicador de velocidades; e, por fim, algumas técnic... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Spur gears are transmission power elements widely used in machinery, however catastrophic failures of this components are just as common and onerous. Vibration analysis is a technique, in among of others, that can be used in diagnostics of incipient damages, common in predictive maintenance, because they change the dynamic behavior of the mechanical system, and the degradation state can be detected by vibration signal or noise. In the current industry production, in which real-time data acquisition - whether for processes control, or for health condition monitoring of equipment - is the reality, it is necessary to develop auxiliary methods that provide high reliability to identification, localization and failure prognostics. In this work, the main objective is to provide a spur gears’ model-based methodology for condition-monitoring and to validate a dynamic model with experimental vibration data of a gearbox. Hence, a dynamic model of spur meshing gears was developed considering a 6 degrees of freedom and time-varying meshing stiffness to simulate vibrations signals; a tooth profile error was also included; in this analytical model, a straight crack was simulated by reducing the meshing stiffness in a tooth; experiments with a gearbox experimental set were run; and, some signal processing was apllied in the vibration data. The results allowed the model validation with the comparison between simulate and experimental signals, in time-domain and frequency-domain
Mestre
Curry, Jacob Michael. "Subregion meshing for multiblock models". Thesis, Queen's University Belfast, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322619.
Pełny tekst źródłaHoogendoorn, Corné. "A statistical dynamic cardiac atlas for the virtual physiological human: construction and application". Doctoral thesis, Universitat Pompeu Fabra, 2014. http://hdl.handle.net/10803/132632.
Pełny tekst źródłaEsta tesis está centrada en la construcción de un atlas cardiaco, para servir como marco común de referencia en el Virtual Physiological Human (VPH). La construcción consiste en la trayectoria completa, empezando con un conjunto de imágenes 3D+t de tomografía computacional multi-corte, y entonces hacer una normalización espacial de las imágenes, segmentación de la imagen promedio sintetizada, un mallado multi-estructura, y finalmente la transformación de la malla a la población de imágenes. Adicionalmente, la tesis presenta dos aplicaciones del atlas. Primero, el atlas se usa para enmarcar un modelo espacio-temporal de la morfología cardiaca que modela la variación a lo largo de ambos 'ejes' simultáneamente. Tal propuesta debe ser preferible sobre otros m\'etodos existentes, los cuales desacoplan las dos fuentes de variación para modelarlas separadamente, en isolación. Segundo, el atlas está aplicado al desarrollo de una técnica de aceleración para simulaciones personalizadas de electrofisiología (EF) cardiaca. El conocimiento previo encapsulado en nuestro atlas se usa, en conjunto con un solver de EF cardiaca, para construir un modelo estadístico conectando morfología cardiaca con los steady states de modelos celulares del miocardio que precondicionan a simulaciones detalladas de EF cardiaca. Esta aplicación posiciona el propuesto atlas dinámico cardiaco en el contexto de simulaciones relacionadas al VPH, cuyo costo computacional actual está en gran exceso de lo aceptable para su adopción en la práctica clínica de hoy en día.
Kasmai, Naser Talon Shamsi. "Solution adaptive meshing strategies for flows with vortices". Master's thesis, Mississippi State : Mississippi State University, 2008. http://library.msstate.edu/etd/show.asp?etd=etd-07082008-134106.
Pełny tekst źródłaRoulois, Guillaume. "Etude et simulation du bruit des boîtes de transmission principales d'hélicoptères". Thesis, Dijon, 2011. http://www.theses.fr/2011DIJOS105.
Pełny tekst źródłaMain gearbox (MGB) is one of the main noise sources in helicopter cabinsand it strongly penalizes acoustic comfort of crews and passengers. In order to reduce theimpact of this source, acoustic and vibration mechanisms of gearboxes have to be understoodand simulated during the development phases. By this way, MGB vibroacoustic behaviourcould be improved by design, thus reducing cost, additional weight and integration difficultiesof sound-proofing solutions. This work presents helicopters MGB and the noise they generate.It also presents our developments regarding the modelling of MGB dynamic behaviour fornoise computation. We have developed a finite elements code allowing to conduct parametricstudies to tune the gearboxes design in early development phases. Our model is able tocompute dynamic loads on bearings of any transmission composed of several cylindrical andspiral bevel gears. At last, we analyse acoustic and vibration measurements done around twoMGB for several conditions of torque and speed. These measurements allow to betterunderstand MGB vibroacoustic behaviour and to confirm some trends observed with ourmodel
Zhou, Chunfeng. "Simulations of interfacial dynamics of complex fluids using diffuse interface method with adaptive meshing". Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/1062.
Pełny tekst źródłaKsiążki na temat "Dynamic meshing"
Institute for Computer Applications in Science and Engineering., red. Multigrid solution strategies for adaptive meshing problems. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1995.
Znajdź pełny tekst źródłaInstitute for Computer Applications in Science and Engineering., red. Adaptive meshing techniques for viscous flow calculations on mixed element unstructured meshes. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Znajdź pełny tekst źródłaMavriplis, Dimitri. Adaptive meshing techniques for viscous flow calculations on mixed element unstructured meshes. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Znajdź pełny tekst źródłaCzęści książek na temat "Dynamic meshing"
Foteinos, Panagiotis, i Nikos Chrisochoides. "Dynamic Parallel 3D Delaunay Triangulation". W Proceedings of the 20th International Meshing Roundtable, 3–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24734-7_1.
Pełny tekst źródłaBlayo, Eric, Laurent Debreu, Grégory Mounié i Denis Trystram. "Dynamic Load Balancing for Ocean Circulation Model with Adaptive Meshing". W Euro-Par’99 Parallel Processing, 303–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48311-x_39.
Pełny tekst źródłaFilgueira da Silva, Samuel, Jony J. Eckert, Áquila Chagas de Carvalho, Fabio Mazzariol Santiciolli, Ludmila C. A. Silva i Franco Giuseppe Dedini. "Multi-body Dynamics Co-simulation of Planetary Gear Train for Dynamic Meshing Force Analysis". W Multibody Mechatronic Systems, 159–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60372-4_18.
Pełny tekst źródłaCurà, Francesca, i Carlo Rosso. "Modelling of Gear Meshing: A Numerical Approach for Dynamic Behavior Estimation of Thin Gears". W Topics in Nonlinear Dynamics, Volume 1, 319–33. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6570-6_29.
Pełny tekst źródłaXu, Rui, Jing Zhang, Jiugen Wang, Renjun Li i Peicheng Shi. "Nonlinear Dynamic Modelling and Analysis for a High Contact Ratio Spur Gear Pair Considering the Meshing State of Multiple Pairs of Teeth". W Advances in Mechanical Design, 2259–72. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7381-8_140.
Pełny tekst źródłaDiestmann, Thomas, Nils Broedling, Benedict Götz i Tobias Melz. "Surrogate Model-Based Uncertainty Quantification for a Helical Gear Pair". W Lecture Notes in Mechanical Engineering, 191–207. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77256-7_16.
Pełny tekst źródłaZhao, Guang, Juncong Su, Jingyu Zhai, Qingkai Han i Yanyan Shi. "Study on Nonlinear Meshing Stiffness of Spline". W Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, 1315–21. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06590-8_107.
Pełny tekst źródłaGusman, Marshall R., Jeffrey A. Housman i Cetin C. Kiris. "Adjoint-Based Adaptive Meshing in a Shape Trade Study for Rocket Ascent". W Computational Fluid Dynamics 2010, 391–400. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17884-9_49.
Pełny tekst źródłaBurda, Pavel, Jaroslav Novotný i Bedřich Sousedík. "A Posteriori Error Estimates and Adaptive Meshing Applied to Flow in Channels with Corners". W Computational Fluid Dynamics 2002, 465–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59334-5_69.
Pełny tekst źródłaDai, Jianing, Yulin Yan, Erhao Li, Zhengyu Gong, Ling Zhang i Zhixing Gu. "Study on the 3-D Natural Circulation Characteristics of LFR Under Steady State by Using Ansys Fluent". W Springer Proceedings in Physics, 930–40. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_79.
Pełny tekst źródłaStreszczenia konferencji na temat "Dynamic meshing"
Cai, Chen, Shi Quan, Wang Guangyan, Ge Hongyu i He Zewen. "Dynamic simulation of meshing force in broken tooth involute gear meshing process based on ADAMS". W 2015 34th Chinese Control Conference (CCC). IEEE, 2015. http://dx.doi.org/10.1109/chicc.2015.7261027.
Pełny tekst źródłaLi, Ruihua, Ruihua Ding i Feng Wang. "Dynamic Simulation Analysis of the Translational Meshing Motor". W 2011 International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). IEEE, 2011. http://dx.doi.org/10.1109/ihmsc.2011.98.
Pełny tekst źródłaSnyder, Deryl, Evangelos Koutsavdis i John Anttonen. "Transonic Store Separation Using Unstructured CFD with Dynamic Meshing". W 33rd AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-3919.
Pełny tekst źródłaSathyanarayana, Nidhi D., i Klaus Hoffmann. "Trajectory Prediction Using Coupled CFD-RBD with Dynamic Meshing". W AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-2304.
Pełny tekst źródłaLi, Qiang, Zhiwei Wang, Zehua Hu, Zhilai Lu i Rui Lu. "Dynamic Analysis and Vibration Research of Point Meshing Gear System". W 2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE, 2022. http://dx.doi.org/10.1109/3m-nano56083.2022.9941628.
Pełny tekst źródłaXie, M., F. M. L. Amirouche i M. Valco. "Dynamic Analysis of Gear Meshing Teeth Using Modified Timoshenko Beam Theory". W ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0057.
Pełny tekst źródłaChen, Siyu, Jinyuan Tang i Xin Liu. "The Dynamic Transmission Error and the Tooth Meshing Force Based on ANSYS/LS-DYNA". W ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34717.
Pełny tekst źródłaDe Smet, M., H. Van Brussel i P. Sas. "FE Meshing Tool for the Dynamic Analysis of Beam-Like Structures". W ASME 1991 Design Technical Conferences. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/detc1991-0282.
Pełny tekst źródłaHong, Jie, XiRu Xu, LiMing Jiang i YanHong Ma. "Vibration Characteristics of Rotor System Considering Gear Meshing". W ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91445.
Pełny tekst źródłaPearson, Connor, Tom Allen i Mark Battley. "Numerical Water Impacts of 2D Hull Forms Using Dynamic Overset Meshing". W SNAME 24th Chesapeake Sailing Yacht Symposium. SNAME, 2022. http://dx.doi.org/10.5957/csys-2022-016.
Pełny tekst źródłaRaporty organizacyjne na temat "Dynamic meshing"
Zukas, Jonas A., i Daniel R. Scheffler. Practical Aspects of Numerical Simulations of Dynamic Events: Effects of Meshing. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2000. http://dx.doi.org/10.21236/ada384433.
Pełny tekst źródłaDuque, Earl, Steve Legensky, Brad Whitlock, David Rogers, Andrew Bauer, Scott Imlay, David Thompson i Seiji Tsutsumi. Summary of the SciTech 2020 Technical Panel on In Situ/In Transit Computational Environments for Visualization and Data Analysis. Engineer Research and Development Center (U.S.), czerwiec 2021. http://dx.doi.org/10.21079/11681/40887.
Pełny tekst źródłaPointer, William David. Reference Computational Meshing Strategy for Computational Fluid Dynamics Simulation of Departure from Nucleate Boiling. Office of Scientific and Technical Information (OSTI), lipiec 2017. http://dx.doi.org/10.2172/1424433.
Pełny tekst źródła